Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3285 #23 Aug 02 2020 21:20:41
%S 0,1,1,4,6,18,35,93,214,549,1362,3534,9102,23951,63192,168561,451764,
%T 1219290,3305783,9008027,24643538,67681372,186504925,515566016,
%U 1429246490,3972598378,11068477743,30908170493,86488245455,242481159915,681048784377,1916051725977,5399062619966
%N a(n) = Sum_t t*F(n,t), where F(n,t) is the number of forests with n (unlabeled) nodes and exactly t trees, all of which are planted (that is, rooted trees in which the root has degree 1).
%C The triangular array F(n,t) (analogous to A095133 for A005196 and A033185 for A005197) is A336087.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Washington Bomfim, <a href="/A005199/b005199.txt">Table of n, a(n) for n = 1..120</a>
%H E. M. Palmer and A. J. Schwenk, <a href="http://dx.doi.org/10.1016/0095-8956(79)90073-X">On the number of trees in a random forest</a>, J. Combin. Theory, B 27 (1979), 109-121.
%F a(n) = Sum_{t=1, floor(n/2)}( t*F(n,t) ), where F(n,t) = Sum_{P_1(n,t)} (Product_{k=2..n} binomial(A000081(k-1) + c_k - 1, c_k)), where P_1(n, t) is the set of the partitions of n with t parts greater than one: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0. - _Washington Bomfim_, Jul 08 2020
%o (PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
%o for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1])); f[m+1] };
%o global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
%o F(n,t)={my(s=0, D, c, P_1); forpart(P_1 = n, D = Set(P_1); c = vector(#D);
%o for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
%o s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k]) )
%o ,[2,n],[t,t]); s};
%o seq(n) = sum(t=1,n\2, t*F(n,t) ); \\ _Washington Bomfim_, Jul 08 2020
%Y Cf. A000081, A336087.
%K nonn
%O 1,4
%A _N. J. A. Sloane_
%E Definition clarified by _N. J. A. Sloane_, May 29 2012