Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1434 #110 May 15 2024 10:39:33
%S 1,2,5,13,33,81,193,449,1025,2305,5121,11265,24577,53249,114689,
%T 245761,524289,1114113,2359297,4980737,10485761,22020097,46137345,
%U 96468993,201326593,419430401,872415233,1811939329,3758096385,7784628225,16106127361,33285996545
%N a(n) = n*2^(n-1) + 1.
%C a(n-1) is the number of permutations of length n which avoid the patterns 132, 4312. - _Lara Pudwell_, Jan 21 2006
%C Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) <= e(j) >= e(k) and e(i) != e(k). [Martinez and Savage, 2.11] - _Eric M. Schmidt_, Jul 17 2017
%C Indices of records in A066099. Also, indices of "cusps" in the graph of A030303 giving positions of 1's in the binary Champernowne word A030190. - _M. F. Hasler_, Oct 12 2020
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A005183/b005183.txt">Table of n, a(n) for n = 0..1000</a>
%H Stephan Baier and Pallab Kanti Dey, <a href="https://arxiv.org/abs/1905.13003">Prime powers dividing products of consecutive integer values of x^2^n + 1</a>, arXiv:1905.13003 [math.NT], 2019. See p. 7.
%H Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See p. 16.
%H Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, <a href="https://arxiv.org/abs/1803.06706">Descent distribution on Catalan words avoiding a pattern of length at most three</a>, arXiv:1803.06706 [math.CO], 2018.
%H A. M. Baxter and L. K. Pudwell, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p58">Ascent sequences avoiding pairs of patterns</a>, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015) Paper #P1.58.
%H Christian Bean, Bjarki Gudmundsson, and Henning Ulfarsson, <a href="https://arxiv.org/abs/1705.04109">Automatic discovery of structural rules of permutation classes</a>, arXiv:1705.04109 [math.CO], 2017.
%H R. K. Guy, <a href="http://www.jstor.org/stable/2691503">The Second Strong Law of Small Numbers</a>, Math. Mag, 63 (1990), no. 1, 3-20.
%H R. K. Guy, <a href="/A005347/a005347.pdf">The Second Strong Law of Small Numbers</a>, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
%H R. K. Guy and N. J. A. Sloane, <a href="/A005180/a005180.pdf">Correspondence</a>, 1988.
%H V. Jelinek, T. Mansour, and M. Shattuck, <a href="http://dx.doi.org/10.1016/j.aam.2012.09.002">On multiple pattern avoiding set partitions</a>, Adv. Appl. Math. 50 (2) (2013) 292-326, Example 4.16, H_{1223} and Example 4.17 L_{1232} and propositions 4.20 and 4.22, all shifted with an additional leading a(0)=1.
%H Megan A. Martinez and Carla D. Savage, <a href="https://arxiv.org/abs/1609.08106">Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations</a>, arXiv:1609.08106 [math.CO], 2016.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.
%H L. Pudwell, <a href="http://faculty.valpo.edu/lpudwell/slides/ascseq.pdf">Pattern-avoiding ascent sequences</a>, Slides from a talk, 2015 Joint Mathematics Meetings, AMS Special Session on Enumerative Combinatorics, January 11, 2015.
%H L. Pudwell and A. Baxter, <a href="http://faculty.valpo.edu/lpudwell/slides/pp2014_pudwell.pdf">Ascent sequences avoiding pairs of patterns</a>, Permutation Patterns 2014, East Tennessee State University, July 7, 2014.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,4).
%F Main diagonal of the array defined by T(0, j)=j+1 j>=0, T(i, 0)=i+1 i>=0, T(i, j)=T(i-1, j-1)+T(i-1, j)-1. - _Benoit Cloitre_, Jun 17 2003
%F G.f.: (1 -3*x +3*x^2)/((1-x)*(1-2*x)^2). - _Lara Pudwell_, Jan 21 2006
%F E.g.f.: exp(x) +x*exp(2*x). - _Joerg Arndt_, May 22 2013
%F Binomial transform of A028310. a(n) = 1 + Sum{k=0..n} C(n, k)*k = 1 + A001787(n). - _Paul Barry_, Jul 21 2003
%F a(n) = Sum_{k=0..2^n} A000120(k) = A000788(2^n). - _Benoit Cloitre_, Sep 25 2003
%F Row sums of triangle A134399. - _Gary W. Adamson_, Oct 23 2007
%F a(n) = A000788(A000079(n)). - _Reinhard Zumkeller_, Mar 04 2010
%F a(n) = 2*a(n-1) +2^(n-1) -1 (with a(0)=1). - _Vincenzo Librandi_, Dec 31 2010
%p A005183 := (1-3*z+3*z**2)/(1-z)/(1-2*z)**2; # Generating function conjectured by _Simon Plouffe_ in his 1992 dissertation.
%t Table[(n+1)*2^n+1,{n,1,30}] (* _Alexander Adamchuk_, Sep 09 2006 *)
%t LinearRecurrence[{5,-8,4},{1,2,5},30] (* _Harvey P. Dale_, Jul 29 2015 *)
%o (PARI) a(n)=n*2^(n-1)+1 \\ _Charles R Greathouse IV_, Sep 24 2015
%o (Magma) [n*2^(n-1)+1: n in [0..35]]; // _Vincenzo Librandi_, May 14 2017
%o (Sage) [2^(n-1)*n+1 for n in (0..35)] # _G. C. Greubel_, May 31 2019
%Y Cf. A000079, A000120, A000788, A028310, A030190, A030303, A066099, A134399.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, _R. K. Guy_
%E More terms from _Lara Pudwell_, Jan 21 2006
%E Edited by _N. J. A. Sloane_ at the suggestion of Jim Propp, Jul 14 2007