OFFSET
1,2
COMMENTS
Officially the group of order 1 is not considered to be simple - see for example Rotman, Group Theory.
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
M. Hall, Jr., A search for simple groups of order less than one million, pp. 137-168 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
M. Aschbacher, Review of "Classification of the finite simple groups, No. 2" by D. Gorenstein, R. Lyons & R. Solomon
C. Cato, The orders of the known simple groups as far as one trillion, Math. Comp., 31 (1977), 574-577.
Dept. of Pure Math., Univ. Sheffield, The Classification of Finite Simple Groups
D. Gorenstein, R. Lyons & R. Solomon, The Classification of the Finite Simple Groups, AMS Books Online, Providence RI 1994.
D. Gorenstein, R. Lyons & R. Solomon, The Classification of the Finite Simple Groups, Number 2, AMS Books Online, Providence RI 1996.
R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
R. Solomon, A Brief History Of The Classification Of The Finite Simple Groups, Bull. Amer. Math. Soc. 38 (2001), 315-352.
MATHEMATICA
(* Recomputation from A001034. *)
maxOrder = 7789;
A001034 = Select[Cases[Import["https://oeis.org/A001034/b001034.txt", "Table"], {_, _}][[All, 2]], # <= maxOrder&];
Union[{1}, Prime[Range[PrimePi[maxOrder]]], A001034] (* Jean-François Alcover, Aug 19 2019 *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved