%I M0431 #27 Oct 26 2023 23:16:14
%S 1,1,1,1,1,1,1,1,1,1,1,2,3,3,1,1,1,1,1,1,1,1,1,1,1,23
%N Number of laminated lattices of dimension n.
%C Next term, a(26), probably exceeds 75000.
%D J. H. Conway and N. J. A. Sloane, Laminated lattices, Annals of Math., 116 (1982), pp. 593-620. A revised version appears as Chapter 6 of "Sphere Packings, Lattices and Groups" by J. H. Conway and N. J. A. Sloane, Springer-Verlag, NY, 1988.
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag. See Chapter 6.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H J. H. Conway and N. J. A. Sloane, <a href="/A005135/a005135.png">The "shower" showing containments among the laminated lattices up to dimension 48</a> (Fig 3 from the Annals paper, also Fig. 6.1 in the Sphere packing book).
%K nonn,more
%O 0,12
%A _N. J. A. Sloane_