Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3024 #35 Feb 15 2019 09:14:56
%S 1,1,3,16,124,1256,15576,226248,3729216,68179968,1361836800,
%T 29501349120,693638208000,17815908096000,502048890201600,
%U 15388268595840000,500579319427891200,16817771937344716800,581609175119297740800
%N Infinitesimal generator of x*(x + 1).
%C From _Peter Bala_, Dec 09 2015: (Start)
%C Given a formal power series f(x) = x + f_2*x^2 + f_3*x^3 + ... Labelle [Section 4, Proposition 4] shows there is a power series w(x) = w_2*x^2 + w_3*x^3 + w_4*x^4 + ..., called the infinitesimal generator of f, such that the n-fold composition f^(n)(x) = f o f o ... o f (n factors) of f(x) is given by the operator exp( n*w(x)*d/dx ) acting on x. This gives the expansion f^(n)(x) = x + n/1!*w(x) + n^2/2!*w(x)*w'(x) + .... Taking n = -1 gives an expansion for the series reversion of f(x).
%C Let R denote the Riordan array (f(x)/x, f(x)). Then the coefficients of the infinitesimal generator w(x) form the first column of the matrix logarithm log(R).
%C Here we take f(x) = x + x^2 and calculate w(x) = x^2*(1 - x + 3*x^2/2! - 16*x^3/3! + 124*x^4/4! - ...). The numerators of the coefficients give a signed version of the present sequence. See the example below. (End)
%C a(29) = -307081193389527408920486163460915200000 is the first negative term. _Georg Fischer_, Feb 15 2019
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. C. Greubel, <a href="/A005119/b005119.txt">Table of n, a(n) for n = 1..200</a>
%H Gilbert Labelle, <a href="http://dx.doi.org/10.1016/S0195-6698(80)80047-3">Sur l'Inversion et l'Iteration Continue des Séries Formelles</a>, European Journal of Combinatorics, Vol. 1 Issue 2 (June 1980), 113-138.
%F a(n) = (n-2)!*Sum_{i=1..n-1} (-1)^(i+1)*C(n-i+1,i+1)*a(n-i)/(n-i-1)! for n>1 with a(1)=1. E.g.f. satisfies: A(x) = (1-x)^2/(1-2x)*A(x-x^2) where A(x) = Sum_{n>=0}a(n+1)*x^n/n! with offset so that A(0)=1. - _Paul D. Hanna_, Dec 27 2007
%e From _Peter Bala_, Dec 09 2015: (Start)
%e The Riordan array R = (1 + x, x*(1 + x)) is A030528.
%e log(R) begins
%e / 0
%e | 1 0
%e | -1 1*2 0
%e | 3/2! -1*2 1*3 0
%e |-16/3! (3/2!)*2 -1*3 1*4 0
%e |124/4! (-16/3!)*2 (3/2!)*3 -1*4 1*5 0
%e |...
%e \
%e The first column begins [1, -1, 3/2!, -16/3! 124/4!, ...]. (End)
%t max = 19; f[x_] := Sum[a[n+1]*x^n/n!, {n, 0, max}]; coes = CoefficientList[ Series[ f[x]-((1-x)^2/(1-2*x))*f[x-x^2], {x, 0, max}], x]; Array[a, max] /. Solve[a[1] == a[2] == 1 && Thread[coes == 0]][[1]] (* _Jean-François Alcover_, Nov 03 2011 *)
%t nmax=20; a = ConstantArray[0,nmax]; a[[1]]=1; Do[a[[n]] = (n-2)! *Sum[(-1)^(i+1)*Binomial[n-i+1,i+1]*a[[n-i]]/(n-i-1)!,{i,1,n-1}],{n,2,nmax}]; a (* _Vaclav Kotesovec_, Mar 12 2014 *)
%o (PARI) {a(n)=if(n<1,0,if(n==1,1,(n-2)!*sum(i=1,n-1,(-1)^(i+1)*binomial(n-i+1,i+1)*a(n-i)/(n-i-1)!)))} \\ _Paul D. Hanna_, Dec 27 2007
%Y Cf. A030528.
%K sign,nice
%O 1,3
%A _N. J. A. Sloane_, _Simon Plouffe_
%E More terms from _Paul D. Hanna_, Dec 27 2007