login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of protruded partitions of n with largest part at most 10.
(Formerly M2571)
0

%I M2571 #20 Jun 09 2017 20:55:53

%S 1,3,6,13,25,50,94,178,328,601,1083,1940,3436,6047,10558,18326,31614,

%T 54265,92683,157626,266985,450580,757851,1270757,2124721,3543318,

%U 5894831,9785243,16210036,26802756,44240560,72906608,119969779

%N Number of protruded partitions of n with largest part at most 10.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. P. Stanley, Ordered structures and partitions, Memoirs of the Amer. Math. Soc., no. 119 (1972).

%H R. P. Stanley, <a href="http://www.fq.math.ca/Scanned/13-3/stanley.pdf">A Fibonacci lattice</a>, Fib. Quart., 13 (1975), 215-232.

%H R. P. Stanley, <a href="/A003277/a003277.pdf">Letter to N. J. A. Sloane, c. 1991</a>

%F G.f.: (1-x)^10/Product(1-x-x^i+x^(1+2*i), i=1..10)-1. - _Emeric Deutsch_, Dec 19 2004

%p G:=(1-x)^10/Product(1-x-x^i+x^(1+2*i),i=1..10)-1: Gser:=series(G,x=0,39): seq(coeff(Gser,x^n),n=1..37); # _Emeric Deutsch_, Dec 19 2004

%K nonn

%O 1,2

%A _N. J. A. Sloane_ and _Richard Stanley_

%E More terms from _Emeric Deutsch_, Dec 19 2004