login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^n + 2^n - 1.
11

%I #38 Aug 18 2023 10:40:35

%S 1,4,12,34,96,274,792,2314,6816,20194,60072,179194,535536,1602514,

%T 4799352,14381674,43112256,129271234,387682632,1162785754,3487832976,

%U 10462450354,31385253912,94151567434,282446313696,847322163874,2541932937192,7625731702714

%N a(n) = 3^n + 2^n - 1.

%C Binomial transform of A083313. - _Paul Barry_, Apr 25 2003

%C Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is a proper subset of y or y is a proper subset of x and x and y are disjoint, 1) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 2) x equals y. Then a(n) = |R|. - _Ross La Haye_, Mar 19 2009

%H Vincenzo Librandi, <a href="/A005056/b005056.txt">Table of n, a(n) for n = 0..1000</a>

%H Ross La Haye, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/LaHaye/lahaye5.html">Binary Relations on the Power Set of an n-Element Set</a>, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).

%F From _Paul Barry_, Apr 25 2003: (Start)

%F G.f.: (1-2x-x^2)/((1-x)(1-2x)(1-3x)).

%F E.g.f.: exp(3x) + exp(2x) - exp(x). (End)

%F a(n) = 5*a(n-1) - 6*a(n-2) - 2 for n > 1, a(0)=1, a(1)=4. - _Vincenzo Librandi_, Dec 31 2010

%F a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n > 2, a(0)=1, a(1)=4, a(2)=12. - _Rick L. Shepherd_, Aug 07 2017

%F a(n) = A007689(n)-1. - _R. J. Mathar_, Mar 10 2022

%t Table[3^n + 2^n - 1, {n, 0, 60}] (* _Vladimir Joseph Stephan Orlovsky_, Jun 27 2011 *)

%t CoefficientList[Series[(1 - 2 x - x^2) / ((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jun 08 2013 *)

%t LinearRecurrence[{6,-11,6},{1,4,12},30] (* _Harvey P. Dale_, Aug 18 2023 *)

%o (PARI) a(n) = 3^n + 2^n - 1 \\ _Rick L. Shepherd_, Aug 07 2017

%Y Cf. A083313.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_