login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 9*2^n.
38

%I #64 Aug 16 2024 19:18:23

%S 9,18,36,72,144,288,576,1152,2304,4608,9216,18432,36864,73728,147456,

%T 294912,589824,1179648,2359296,4718592,9437184,18874368,37748736,

%U 75497472,150994944,301989888,603979776,1207959552,2415919104,4831838208,9663676416,19327352832

%N a(n) = 9*2^n.

%C Row sums of (8, 1)-Pascal triangle A093565. - _N. J. A. Sloane_, Sep 22 2004

%C The first differences are the sequence itself. - _Alexandre Wajnberg_ & _Eric Angelini_, Sep 07 2005

%C For n>=1, a(n) is equal to the number of functions f:{1,2,...,n+2}->{1,2,3} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+2} and fixed y_1, y_2,...,y_n in {1,2,3} we have f(x_i)<>y_i, (i=1,2,...,n). - _Milan Janjic_, May 10 2007

%C 9 times powers of 2. - _Omar E. Pol_, Dec 16 2008

%C a(n) = A173786(n+3,n) for n>2. - _Reinhard Zumkeller_, Feb 28 2010

%C Let D(m) = {d(m,i)}, i = 1..q, denote the set of the q divisors of a number m, and consider s0(m) and s1(m) the sums of the divisors that are congruent to 2 and 3 (mod 4) respectively. For n>0, the sequence a(n) lists the numbers m such that s0(m) = 26 and s1(m) = 3. - _Michel Lagneau_, Feb 10 2017

%H Vincenzo Librandi, <a href="/A005010/b005010.txt">Table of n, a(n) for n = 0..235</a>

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).

%F a(n) = 9*2^n.

%F G.f.: 9/(1-2*x).

%F a(n) = A118416(n+1,5) for n>4. - _Reinhard Zumkeller_, Apr 27 2006

%F a(n) = 2*a(n-1), n>0; a(0)=9. - _Philippe Deléham_, Nov 23 2008

%F a(n) = 9*A000079(n). - _Omar E. Pol_, Dec 16 2008

%F a(n) = 3*A007283(n). - _Omar E. Pol_, Jul 14 2015

%F E.g.f.: 9*exp(2*x). - _Elmo R. Oliveira_, Aug 16 2024

%t 9*2^Range[0, 60] (* _Vladimir Joseph Stephan Orlovsky_, Jun 09 2011 *)

%o (Magma) [9*2^n: n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011

%o (PARI) a(n)=9<<n \\ _Charles R Greathouse IV_, Apr 17 2012

%Y Cf. A000079, A093565, A173786, A118416, A007283.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Jun 14 1998