login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of at most 7 positive 7th powers.
2

%I #22 May 20 2022 04:59:43

%S 0,1,2,3,4,5,6,7,128,129,130,131,132,133,134,256,257,258,259,260,261,

%T 384,385,386,387,388,512,513,514,515,640,641,642,768,769,896,2187,

%U 2188,2189,2190,2191,2192,2193,2315,2316,2317,2318,2319,2320,2443,2444,2445

%N Numbers that are the sum of at most 7 positive 7th powers.

%H Alois P. Heinz, <a href="/A004869/b004869.txt">Table of n, a(n) for n = 1..15469</a>

%p b:= proc(n, i, t) option remember; n=0 or i>0 and t>0

%p and (b(n, i-1, t) or i^7<=n and b(n-i^7, i, t-1))

%p end:

%p a:= proc(n) option remember; local k;

%p for k from 1+ `if`(n=1, -1, a(n-1))

%p while not b(k, iroot(k, 7), 7) do od; k

%p end:

%p seq(a(n), n=1..60); # _Alois P. Heinz_, Sep 16 2016

%t b[n_, k_, i_, t_] := b[n, k, i, t] = n == 0 || i > 0 && t > 0 && (b[n, k, i - 1, t] || i^k <= n && b[n - i^k, k, i, t - 1]);

%t A[n_, k_] := A[n, k] = Module[{m}, For[m = 1 + If[n == 1, -1, A[n - 1, k]], !b[m, k, m^(1/k) // Floor, k], m++]; m];

%t a[n_] := A[n, 7];

%t Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, May 20 2022, after _Alois P. Heinz_ in A336820 *)

%Y Column k=7 of A336820.

%K nonn

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Alois P. Heinz_, Sep 16 2016