Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Apr 24 2023 12:12:25
%S 10,1033,2056,3079,4102,5125,6148,7171,8194,9217,10240,59058,60081,
%T 61104,62127,63150,64173,65196,66219,67242,68265,118106,119129,120152,
%U 121175,122198,123221,124244,125267,126290,177154,178177,179200,180223,181246,182269,183292,184315
%N Numbers that are the sum of 10 positive 10th powers.
%H David A. Corneth, <a href="/A004810/b004810.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%e From _David A. Corneth_, Aug 03 2020: (Start)
%e 72332028 is in the sequence as 72332028 = 1^10 + 1^10 + 1^10 + 2^10 + 2^10 + 2^10 + 4^10 + 4^10 + 5^10 + 6^10.
%e 243962883 is in the sequence as 243962883 = 1^10 + 1^10 + 1^10 + 2^10 + 4^10 + 4^10 + 6^10 + 6^10 + 6^10 + 6^10.
%e 312998872 is in the sequence as 312998872 = 1^10 + 2^10 + 3^10 + 3^10 + 3^10 + 4^10 + 5^10 + 5^10 + 5^10 + 7^10. (End)
%t M = 1413602992; m = M^(1/10) // Ceiling; Reap[
%t For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
%t For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
%t For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
%t For[j = i, j <= m, j++,
%t s = a^10 + b^10 + c^10 + d^10 + e^10 + f^10 + g^10 + h^10 + i^10 + j^10;
%t If[s <= M, Sow[s]]]]]]]]]]]]][[2, 1]] // Union (* _Jean-François Alcover_, Dec 01 2020 *)
%Y Cf. A008454.
%Y Column k=10 of A336725.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_