login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least positive unitary linear combination of distinct numbers in row n of Pascal's triangle; i.e., least positive sum of form d(0)C(n-1,0) + d(1)C(n-1,1) + ...+ d(m)C(n-1,m), d(i)=+-1, m = floor((n+1)/2).
0

%I #17 Dec 29 2024 09:06:20

%S 1,1,1,2,1,4,2,6,5,2,22,10,64,64,102,126,33,220,1902,132,2202,604,

%T 2120,942,22768,4044,234638,7436,614482,8264,107008,23776,11154697,

%U 4336,1152138,129812,37815814,245272,23068832,341506,12223534,427260,53970758,170064,133421946,4163944

%N Least positive unitary linear combination of distinct numbers in row n of Pascal's triangle; i.e., least positive sum of form d(0)C(n-1,0) + d(1)C(n-1,1) + ...+ d(m)C(n-1,m), d(i)=+-1, m = floor((n+1)/2).

%o (PARI) padbin(n, len) = my(b = binary(n)); while(length(b) < len, b = concat(0, b);); b;

%o a(n) = m = (n+1)\2; nb = 2^(m+1); lps = 0; v = vector(m, i, binomial(n-1, i-1)); for (i = 1, nb-1, vb = padbin(i, m+1); s = sum(k = 1, m, if (vb[k], v[k], -v[k])); if ((s>0), if (lps == 0, lps = s, if (s < lps, lps = s;);));); lps; \\ _Michel Marcus_, Sep 30 2013

%Y Cf. A007318 (Pascal's triangle).

%K nonn,changed

%O 1,4

%A _Clark Kimberling_

%E a(22)-a(43) from _Michel Marcus_, Sep 30 2013

%E a(44)-a(46) from _Michel Marcus_, Dec 29 2024