login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct prime divisors of the numbers in row n of Pascal's triangle.
6

%I #28 Apr 01 2018 21:01:32

%S 0,0,1,1,2,2,3,3,3,3,4,5,5,5,5,5,6,6,7,7,7,7,8,9,8,8,8,8,9,10,10,10,

%T 10,10,10,11,11,11,11,12,12,12,13,13,14,13,14,15,14,14,14,14,15,15,15,

%U 16,15,15,16,17,17,17,18,17,17,17,18,18,18,19,19,20,20

%N Number of distinct prime divisors of the numbers in row n of Pascal's triangle.

%C Also the number of prime divisors of A002944(n) = lcm_{j=0..floor(n/2)} binomial(n,j).

%C The terms are increasing by intervals, then decrease once. The local maxima are obtained for 23, 44, 47, 55, 62, 79, 83, 89, 104, 119, 131, 134, 139, 143, .... - _Michel Marcus_, Mar 21 2013

%C a(A004789(n)) = n and a(m) != n for m < A004789(n). - _Reinhard Zumkeller_, Mar 16 2015

%H T. D. Noe, <a href="/A004788/b004788.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A001221(A001142(n)). - _Reinhard Zumkeller_, Mar 16 2015

%t Table[prd = Product[Binomial[n, k], {k, 0, n}]; If[prd == 1, 0, Length[FactorInteger[prd]]], {n, 0, 100}] (* _T. D. Noe_, Mar 21 2013 *)

%o (PARI) a(n) = {sfp = Set(); for (k=1, n-1, sfp = setunion(sfp, Set(factor(binomial(n, k))[,1]))); return (length(sfp));} \\ _Michel Marcus_, Mar 21 2013

%o (Haskell)

%o a004788 = a001221 . a001142 -- _Reinhard Zumkeller_, Mar 16 2015

%Y Cf. A004789.

%Y Cf. A001221, A001142, A256113.

%K nonn

%O 0,5

%A _Clark Kimberling_