login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Concatenation of sequences (1,3,..,2n-1,2n,2n-2,..,2) for n >= 1.
2

%I #38 Feb 05 2021 12:04:25

%S 1,2,1,3,4,2,1,3,5,6,4,2,1,3,5,7,8,6,4,2,1,3,5,7,9,10,8,6,4,2,1,3,5,7,

%T 9,11,12,10,8,6,4,2,1,3,5,7,9,11,13,14,12,10,8,6,4,2,1,3,5,7,9,11,13,

%U 15,16,14,12,10,8,6,4,2,1,3,5,7,9,11,13,15,17,18,16,14,12,10,8,6,4,2,1,3,5,7,9,11,13,15,17,19

%N Concatenation of sequences (1,3,..,2n-1,2n,2n-2,..,2) for n >= 1.

%C Odd numbers increasing from 1 to 2k-1 followed by even numbers decreasing from 2k to 2.

%C The ordinal transform of a sequence b_0, b_1, b_2, ... is the sequence a_0, a_1, a_2, ... where a_n is the number of times b_n has occurred in {b_0 ... b_n}.

%C This is a fractal sequence, see Kimberling link.

%D F. Smarandache, "Numerical Sequences", University of Craiova, 1975; [Arizona State University, Special Collection, Tempe, AZ, USA].

%H Vincenzo Librandi, <a href="/A004741/b004741.txt">Table of n, a(n) for n = 1..10100</a>

%H J. Brown et al., <a href="https://doi.org/10.1111/j.1949-8594.1997.tb17373.x">Problem 4619</a>, School Science and Mathematics (USA), Vol. 97(4), 1997, pp. 221-222.

%H Clark Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/fractals.html">Fractal sequences</a>.

%H F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/Sequences-book.pdf">Sequences of Numbers Involved in Unsolved Problems</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmarandacheSequences.html">Smarandache Sequences</a>.

%F Ordinal transform of A004737. - _Franklin T. Adams-Watters_, Aug 28 2006

%t Flatten[Table[{Range[1,2n-1,2],Range[2n,2,-2]},{n,10}]] (* _Harvey P. Dale_, Aug 12 2014 *)

%o (Haskell)

%o a004741 n = a004741_list !! (n-1)

%o a004741_list = concat $ map (\n -> [1,3..2*n-1] ++ [2*n,2*n-2..2]) [1..]

%o -- _Reinhard Zumkeller_, Mar 26 2011

%K nonn,easy

%O 1,2

%A R. Muller

%E Data corrected from 36th term on by _Reinhard Zumkeller_, Mar 26 2011