login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Divisors of 2^32 - 1 (for a(1) to a(31), the 31 regular polygons with an odd number of sides constructible with ruler and compass).
15

%I #25 Dec 20 2014 03:29:56

%S 1,3,5,15,17,51,85,255,257,771,1285,3855,4369,13107,21845,65535,65537,

%T 196611,327685,983055,1114129,3342387,5570645,16711935,16843009,

%U 50529027,84215045,252645135,286331153,858993459,1431655765,4294967295

%N Divisors of 2^32 - 1 (for a(1) to a(31), the 31 regular polygons with an odd number of sides constructible with ruler and compass).

%C The 32 divisors of the product of the 5 known Fermat primes.

%C The only known odd numbers whose totient is a power of 2. - _Labos Elemer_, Dec 06 2000

%C Equals first 32 members of A001317. Also, equals first 32 members of A053576. - _Omar E. Pol_, Dec 10 2008

%C Omitting the first term a(0)=1 gives A045544 (the number of sides of constructible odd-sided regular polygons.)

%D J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 140.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RegularPolygon.html">Regular Polygon</a>, <a href="http://mathworld.wolfram.com/SierpinskiSieve.html">Sierpiński Sieve</a>, <a href="http://mathworld.wolfram.com/ConstructiblePolygon.html">Constructible Polygon</a>

%H OEIS Wiki, <a href="/wiki/Constructible_odd-sided_polygons">Constructible odd-sided polygons</a>

%H OEIS Wiki, <a href="/wiki/Sierpinski&#39;s_triangle">Sierpinski's triangle</a>

%H <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>

%t Divisors[2^32-1]

%o (PARI) divisors(1<<32-1)

%Y Essentially same as A045544.

%Y Cf. A000010, A000215, A001317, A003401, A003527, A004169, A004729, A019434, A045544, A047999, A053576, A054432.

%K nonn,fini,full,easy

%O 0,2

%A _N. J. A. Sloane_

%E Edited by _Daniel Forgues_, Jun 17 2011