Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:44:33
%S 1,1,3,4,9,11,19,24,37,45,63,76,101,119,151,176,217,249,299,340,401,
%T 451,523,584,669,741,839,924,1037,1135,1263,1376,1521,1649,1811,1956,
%U 2137,2299,2499,2680,2901,3101
%N Expansion of g.f.: (1+x^3)*(1+x^4)/((1-x)*(1-x^2)^2*(1-x^4)).
%D M. Klemm, Selbstduale Codes ueber dem Ring der ganzen Zahlen modulo 4, Arch. Math. (Basel), 53 (1989), 201-207.
%H G. C. Greubel, <a href="/A004657/b004657.txt">Table of n, a(n) for n = 0..1000</a>
%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_4, J. Algeb. Combin., 6 (1997) 119-131 (<a href="http://neilsloane.com/doc/mckay.txt">Abstract</a>, <a href="http://neilsloane.com/doc/mckay.pdf">pdf</a>, <a href="http://neilsloane.com/doc/mckay.ps">ps</a>).
%H <a href="/index/Mo#Molien">Index entries for Molien series</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,2,-2,0,2,-1).
%F G.f.: (x^2-x+1)*(1+x^4) / ( (x^2+1)*(1+x)^2*(x-1)^4 ). - _R. J. Mathar_, Dec 18 2014
%t CoefficientList[Series[(x^2 - x + 1)*(1 + x^4)/((x^2 + 1)*(1 + x)^2*(x - 1)^4), {x, 0, 50}], x] (* _G. C. Greubel_, Sep 10 2018 *)
%o (PARI) x='x+O('x^50); Vec((x^2-x+1)*(1+x^4)/((x^2+1)*(1+x)^2*(x-1)^4)) \\ _G. C. Greubel_, Sep 10 2018
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^2-x+1)*(1+x^4)/((x^2+1)*(1+x)^2*(x-1)^4))); // _G. C. Greubel_, Sep 10 2018
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E Definition corrected by _N. J. A. Sloane_, Apr 08 2004