login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1+x^2+x^4)/((1-x)*(1-x^2)*(1-x^3)).
23

%I #110 Dec 29 2022 20:06:38

%S 0,1,1,3,4,7,9,13,16,21,25,31,36,43,49,57,64,73,81,91,100,111,121,133,

%T 144,157,169,183,196,211,225,241,256,273,289,307,324,343,361,381,400,

%U 421,441,463,484,507,529,553,576,601,625,651,676,703,729,757,784,813

%N Expansion of x*(1+x^2+x^4)/((1-x)*(1-x^2)*(1-x^3)).

%C As a Molien series this arises as (1+x^12)/((1-x^4)*(1-x^8)^2).

%C Starting (1, 3, 4, ...) = row sums of an infinite triangle with alternate columns of (1, 2, 3, ...) and (1, 0, 0, 0, ...). - _Gary W. Adamson_, May 14 2010

%C a(n) is also the number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and one square has one of the colors. See the formula from A054772. - _Wolfdieter Lang_, Oct 03 2016

%C Also the genus of the complete bipartite graph K_{n+2,n+2}. - _Eric W. Weisstein_, Jan 19 2018

%H Vincenzo Librandi, <a href="/A004652/b004652.txt">Table of n, a(n) for n = 0..10000</a>

%H A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_4, J. Algeb. Combin., 6 (1997) 119-131 (<a href="http://neilsloane.com/doc/mckay.txt">Abstract</a>, <a href="http://neilsloane.com/doc/mckay.pdf">pdf</a>, <a href="http://neilsloane.com/doc/mckay.ps">ps</a>).

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H J. E. Strapasson, S. I. R. Costa, and M. M. S. Alves, <a href="http://arxiv.org/abs/1004.0244">On Genus of Circulant Graphs</a>, arXiv:1004.0244 [math.GN], 2010-2016. - _Jonathan Vos Post_, Apr 05 2010

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphGenus.html">Graph Genus</a>

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F a(n) = ceiling(n^2/4).

%F a(-n) = a(n).

%F G.f.: x * (1 - x + x^2) / ((1 - x)^2 * (1 - x^2)).

%F a(n) = a(n-1) + a(n-2) - a(n-3) + 1. a(2*n) = n^2, a(2*n-1) = n^2 - n + 1. - _Michael Somos_, Apr 21 2000

%F Interleaves square numbers with centered polygonal numbers: a(2*n)=A000290(n), a(2*n+1)=A002061(n+1). - _Paul Barry_, Mar 13 2003

%F For n > 1: a(n) is the digit reversal of n in base A008619(n), where a(n) is written in base 10. - _Naohiro Nomoto_, Mar 15 2004

%F a(n) = a(n-2) + n - 1. - _Paul Barry_, Jul 14 2004

%F Euler transform of length 6 sequence [ 1, 2, 1, 0, 0, -1]. - _Michael Somos_, Apr 03 2007

%F Starting (1, 3, 4, 7, 9, 13, ...), row sums of triangle A135840. - _Gary W. Adamson_, Dec 01 2007

%F a(n) = (3/8)*(-1)^(n+1) + 5/8 - (3/4)*(n+1) + (1/4)*(n+2)*(n+1). - _Richard Choulet_, Nov 27 2008

%F a(n) = n^2/4 - 3*((-1)^n-1)/8. - _Omar E. Pol_, Sep 28 2011

%F a(n) = -n + floor( (n+1)(n+3)/4 ). - _Wesley Ivan Hurt_, Jun 23 2013

%F a(n) = A054772(n, 1) = A054772(n, n^2-1), n >= 1. - _Wolfdieter Lang_, Oct 03 2016

%F E.g.f.: (x*(x + 1)*exp(x) + 3*sinh(x))/4. - _Ilya Gutkovskiy_, Oct 03 2016

%F a(n) = binomial(floor((n+3)/2),2) + binomial(floor((n+(-1)^n)/2),2). - _Yuchun Ji_, Feb 03 2021

%e From _Gary W. Adamson_, May 14 2010: (Start)

%e First few rows of the generating triangle =

%e 1;

%e 2, 1;

%e 3, 0, 1;

%e 4, 0, 2, 1;

%e 5, 0, 3, 0, 1;

%e 6, 0, 4, 0, 2, 1;

%e 7, 0, 5, 0, 3, 0, 1;

%e 8, 0, 6, 0, 4, 0, 2, 1;

%e ...

%e Example: a(7) = 13 = (6 + 0 + 4 + 0 + 2 + 1). (End)

%e x + x^2 + 3*x^3 + 4*x^4 + 7*x^5 + 9*x^6 + 13*x^7 + 16*x^8 + 21*x^9 + ...

%p with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card<r),U=Sequence(Z,card>=2)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m+3),m=0..57) ; # _Zerinvary Lajos_, Mar 09 2007

%t CoefficientList[Series[x (1 - x + x^2)/((1 - x)^2*(1 - x^2)), {x, 0, 57}], x] (* _Michael De Vlieger_, Oct 03 2016 *)

%t Table[Ceiling[n^2/4], {n, 0, 20}] (* _Eric W. Weisstein_, Jan 19 2018 *)

%t Ceiling[Range[0, 20]^2/4] (* _Eric W. Weisstein_, Jan 19 2018 *)

%t LinearRecurrence[{2, 0, -2, 1}, {1, 1, 3, 4}, {0, 20}] (* _Eric W. Weisstein_, Jan 19 2018 *)

%o (PARI) {a(n) = ceil(n^2 / 4)}

%o (Magma) [Ceiling(n^2/4): n in [0..60] ]; // _Vincenzo Librandi_, Aug 19 2011

%o (Haskell)

%o a004652 = ceiling . (/ 4) . fromIntegral . (^ 2)

%o a004652_list = 0 : 1 : zipWith (+) a004652_list [1..]

%o -- _Reinhard Zumkeller_, Dec 18 2013

%Y First differences give A028242. Cf. A035104, A035106.

%Y A002061(n)=a(2*n-1). A035104(n)=a(n+7)-12. A035106(n)=a(n+3)-1.

%Y Cf. A135840, A000290.

%Y Column 1 of A195040. - _Omar E. Pol_, Sep 28 2011

%Y Cf. A054772, column 2.

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_