Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Dec 27 2023 08:31:34
%S 4,5,3,7,8,6,1,2,0,13,14,12,16,17,15,10,11,9,22,23,21,25,26,24,19,20,
%T 18,31,32,30,34,35,33,28,29,27,40,41,39,43,44,42,37,38,36,49,50,48,52,
%U 53,51,46,47,45,58,59,57,61
%N Tersum n + 4.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,1,-1).
%F Tersum m + n: write m and n in base 3 and add mod 3 with no carries; e.g., 5 + 8 = "21" + "22" = "10" = 1.
%t LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {4, 5, 3, 7, 8, 6, 1, 2, 0, 13, 14}, 80] (* _Jinyuan Wang_, Mar 10 2020 *)
%o (Python)
%o def tersum(a, b):
%o c, pow3 = 0, 1
%o while a + b > 0:
%o a, ra = divmod(a, 3)
%o b, rb = divmod(b, 3)
%o c, pow3 = c + pow3*((ra+rb)%3), pow3*3
%o return c
%o def a(n): return tersum(n, 4)
%o print([a(n) for n in range(58)]) # _Michael S. Branicky_, Apr 05 2021
%o (PARI) my(table=[4,4,1,4,4,1,-5,-5,-8]); a(n) = n + table[n%9+1]; \\ _Kevin Ryde_, Apr 05 2021
%Y Cf. A004489 (tersum array).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_