login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Colossally abundant numbers: m for which there is a positive exponent epsilon such that sigma(m)/m^{1 + epsilon} >= sigma(k)/k^{1 + epsilon} for all k > 1, so that m attains the maximum value of sigma(m)/m^{1 + epsilon}.
54

%I #86 Dec 05 2024 13:52:05

%S 2,6,12,60,120,360,2520,5040,55440,720720,1441440,4324320,21621600,

%T 367567200,6983776800,160626866400,321253732800,9316358251200,

%U 288807105787200,2021649740510400,6064949221531200,224403121196654400

%N Colossally abundant numbers: m for which there is a positive exponent epsilon such that sigma(m)/m^{1 + epsilon} >= sigma(k)/k^{1 + epsilon} for all k > 1, so that m attains the maximum value of sigma(m)/m^{1 + epsilon}.

%D S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., 14 (1915), 347-407. Reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, pp. 78-129. See esp. pp. 87, 115.

%H Amiram Eldar, <a href="/A004490/b004490.txt">Table of n, a(n) for n = 1..382</a> (terms 1..150 from T. D. Noe)

%H Hirotaka Akatsuka, <a href="https://arxiv.org/abs/2411.19259">Maximal order for divisor functions and zeros of the Riemann zeta-function</a>, arXiv:2411.19259 [math.NT], 2024. See p. 4.

%H L. Alaoglu and P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1944-03.pdf">On highly composite and similar numbers,</a> Trans. Amer. Math. Soc., 56 (1944), 448-469. <a href="http://upforthecount.com/math/errata.html">Errata</a>

%H Keith Briggs, <a href="https://projecteuclid.org/euclid.em/1175789744">Abundant numbers and the Riemann Hypothesis</a>, Experimental Math., Vol. 16 (2006), p. 251-256.

%H Kevin Broughan, <a href="https://doi.org/10.1017/9781108178228.008">A Variety of Abundant Numbers</a>, in Equivalents of the Riemann Hypothesis. Cambridge University Press, 2017, pp. 144-164.

%H G. Caveney, J.-L. Nicolas and J. Sondow, <a href="http://arxiv.org/abs/1112.6010">On SA, CA, and GA numbers</a>, arXiv:1112.6010 [math.NT], 2011-2012; Ramanujan J., 29 (2012), 359-384.

%H G. Caveney, J.-L. Nicolas and J. Sondow, <a href="http://arxiv.org/abs/1112.6010">On SA, CA, and GA numbers</a>, arXiv preprint arXiv:1112.6010 [math.NT], 2011. - From _N. J. A. Sloane_, Apr 14 2012

%H J. C. Lagarias, <a href="https://arxiv.org/abs/math/0008177">An elementary problem equivalent to the Riemann hypothesis</a>, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.

%H S. Nazardonyavi and S. Yakubovich, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Nazar/nazar4.html">Extremely Abundant Numbers and the Riemann Hypothesis</a>, Journal of Integer Sequences, 17 (2014), Article 14.2.8.

%H S. Ramanujan, <a href="http://dx.doi.org/10.1023/A:1009764017495">Highly composite numbers</a>, Annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J., 1 (1997), 119-153.

%H T. Schwabhäuser, <a href="http://arxiv.org/abs/1308.3678">Preventing Exceptions to Robin's Inequality</a>, arXiv preprint arXiv:1308.3678 [math.NT], 2013.

%H M. Waldschmidt, <a href="http://www.math.jussieu.fr/~miw/articles/pdf/LegacyRamanujan2013Text.pdf">From highly composite numbers to transcendental number theory</a>, 2013.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ColossallyAbundantNumber.html">Colossally Abundant Number</a>.

%F a(n) = Product_{k=1..n} A073751(k). - _Jeppe Stig Nielsen_, Nov 28 2021

%Y A subsequence of A004394 (superabundant numbers).

%Y Cf. A000203, A002201, A073751.

%Y Cf. A002093 (highly abundant numbers), A002182, A005101 (abundant numbers), A006038, A189228 (superabundant numbers that are not colossally abundant).

%K nonn,changed

%O 1,1

%A _N. J. A. Sloane_, Jan 22 2001