OFFSET
0,1
COMMENTS
A self-inverse permutation of the natural numbers. - Philippe Deléham, Nov 22 2016
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-1,0,0,0,0,0,0,0,-1,2,-2,2,-2,2,-2,2,-1).
FORMULA
a(n) = n + 2(-1)^[n/2] + 4(-1)^[n/4] + 16(-1)^[n/16]. - Mitchell Harris, Jan 10 2005
From Colin Barker, Apr 14 2016: (Start)
a(n) = n XOR 22.
G.f.: (22 -21*x +18*x^2 -17*x^3 +14*x^4 -13*x^5 +10*x^6 -9*x^7 -10*x^16 +11*x^17 -14*x^18 +15*x^19 -18*x^20 +19*x^21 -22*x^22 +23*x^23) / ((1 -x)^2*(1 +x^2)*(1 +x^4)*(1 +x^16)).
(End)
a(n+32) = a(n)+32. - Robert Israel, Nov 22 2016
MAPLE
seq(Bits:-Xor(n, 22), n=0..100); # Robert Israel, Nov 22 2016
PROG
(PARI) Vec((22 -21*x +18*x^2 -17*x^3 +14*x^4 -13*x^5 +10*x^6 -9*x^7 -10*x^16 +11*x^17 -14*x^18 +15*x^19 -18*x^20 +19*x^21 -22*x^22 +23*x^23) / ((1 -x)^2*(1 +x^2)*(1 +x^4)*(1 +x^16)) + O(x^50)) \\ Colin Barker, Apr 14 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved