Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 05 2020 14:58:10
%S 1,76,5624,416100,30785776,2277731324,168521332200,12468300851476,
%T 922485741677024,68251476583248300,5049686781418697176,
%U 373608570348400342724,27641984519000206664400,2045133245835666892822876,151312218207320349862228424
%N Expansion of (1+2*x+x^2)/(1-74*x+x^2).
%D P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.
%H Vincenzo Librandi, <a href="/A004299/b004299.txt">Table of n, a(n) for n = 0..500</a>
%H J. M. Alonso, <a href="http://dx.doi.org/10.1007/978-1-4612-3142-4_1">Growth functions of amalgams</a>, in Alperin, ed., Arboreal Group Theory, Springer, pp. 1-34, esp. p. 32.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (74,-1).
%F From _Colin Barker_, Apr 16 2016: (Start)
%F a(n) = (37+6*sqrt(38))^(1-n)*(-228+37*sqrt(38))*(-1+(37+6*sqrt(38))^(2*n))/6 for n>0.
%F a(n) = 74*a(n-1) - a(n-2) for n>2.
%F (End)
%F a(n) = (-3*(-1)^(2^n) + 2*sqrt(38)*sinh(n*log(37+6*sqrt(38))) + 3)/6. - _Ilya Gutkovskiy_, Apr 16 2016
%t CoefficientList[Series[(1+2*x+x^2)/(1-74*x+x^2),{x,0,20}],x] (* _Vincenzo Librandi_, Jun 14 2012 *)
%t LinearRecurrence[{74,-1},{1,76,5624},20] (* _Harvey P. Dale_, Jan 05 2020 *)
%o (PARI) Vec((1+2*x+x^2)/(1-74*x+x^2)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_