Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3930 #134 Dec 28 2024 00:07:37
%S 0,1,5,24,115,551,2640,12649,60605,290376,1391275,6665999,31938720,
%T 153027601,733199285,3512968824,16831644835,80645255351,386394631920,
%U 1851327904249,8870244889325,42499896542376,203629237822555,975646292570399,4674602225029440
%N a(n) = 5*a(n-1) - a(n-2) for n > 1, a(0) = 0, a(1) = 1.
%C Nonnegative values of y satisfying x^2 - 21*y^2 = 4; values of x are in A003501. - _Wolfdieter Lang_, Nov 29 2002
%C a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 5's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - _John M. Campbell_, Jun 09 2011
%C For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4}. - _Milan Janjic_, Jan 25 2015
%C Lim_{n->oo} a(n+1)/a(n) = (5 + sqrt(21))/2 = A107905. - _Wolfdieter Lang_, Nov 15 2023
%C From _Klaus Purath_, Jul 26 2024: (Start)
%C For any three consecutive terms (x, y, z), y^2 - xz = 1 always applies.
%C a(n) = (t(i+2n) - t(i))/(t(i+n+1) - t(i+n-1)) where (t) is any recurrence t(k) = 4t(k-1) + 4t(k-2) - t(k-3) or t(k) = 5t(k-1) - t(k-2) without regard to initial valus.
%C In particular, if the recurrence (t) of the form (4,4,-1) has the same three initial values as the current sequence, a(n) = t(n) applies.
%C a(n) = (t(k+1)*t(k+n) - t(k)*t(k+n+1))/(y^2 - xz) where (t) is any recurrence of the current family with signature (5,-1) and (x, y, z) are any three consecutive terms of (t), for integer k >= 0. (End)
%D F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Indranil Ghosh, <a href="/A004254/b004254.txt">Table of n, a(n) for n = 0..1467</a> (terms 0..200 from T. D. Noe)
%H Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, <a href="https://www.emis.de/journals/INTEGERS/papers/p38/p38.Abstract.html">Polynomial sequences on quadratic curves</a>, Integers, Vol. 15, 2015, #A38.
%H K. Andersen, L. Carbone, and D. Penta, <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
%H Francesca Arici and Jens Kaad, <a href="https://arxiv.org/abs/2012.11186">Gysin sequences and SU(2)-symmetries of C*-algebras</a>, arXiv:2012.11186 [math.OA], 2020.
%H D. Birmajer, J. B. Gil, and M. D. Weiner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Gil/gil6.html">On the Enumeration of Restricted Words over a Finite Alphabet</a>, J. Int. Seq. 19 (2016) # 16.1.3 , Example 12
%H Chair, Noureddine <a href="https://doi.org/10.1016/j.aop.2012.09.002">Exact two-point resistance, and the simple random walk on the complete graph minus N edges</a>, Ann. Phys. 327, No. 12, 3116-3129 (2012), B(7).
%H E. I. Emerson, <a href="http://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242.
%H Dale Gerdemann, <a href="https://www.youtube.com/watch?v=hZFnWYPL1Uk">Fractal images from (5,-1) recursion</a>, YouTube Video, Nov 05 2014.
%H Dale Gerdemann, <a href="https://www.youtube.com/watch?v=Fz5NY7b5dSQ">Fractal images from (5,-1) recursion: Selections in detail</a>, YouTube Video, Nov 05 2014.
%H Frank A. Haight, <a href="/A004253/a004253_1.pdf">Letter to N. J. A. Sloane, Sep 06 1976</a>
%H Frank A. Haight, <a href="/A004253/a004253.pdf">On a generalization of Pythagoras' theorem</a>, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971. [Annotated scanned copy]
%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special properties of the sequence W_n(a,b; p,q)</a>, Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=5, q=-1.
%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/9-3/horadam-a.pdf">Pell Identities</a>, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html">On Linear Recurrence Equations Arising from Compositions of Positive Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H Wolfdieter Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38,5 (2000) 408-419; Eq.(44), lhs, m=7.
%H Ioana-Claudia Lazăr, <a href="https://arxiv.org/abs/1904.06555">Lucas sequences in t-uniform simplicial complexes</a>, arXiv:1904.06555 [math.GR], 2019.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H F. M. van Lamoen, <a href="http://forumgeom.fau.edu/FG2006volume6/FG200637index.html">Square wreaths around hexagons</a>, Forum Geometricorum, 6 (2006) 311-325.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-1).
%F G.f.: x/(1-5*x+x^2).
%F a(n) = (((5+sqrt(21))/2)^n-((5-sqrt(21))/2)^n)/sqrt(21). - _Barry E. Williams_, Aug 29 2000
%F a(n) = S(2*n-1, sqrt(7))/sqrt(7) = S(n-1, 5); S(n, x)=U(n, x/2), Chebyshev polynomials of 2nd kind, A049310.
%F A003501(n) = sqrt(21*a(n)^2 + 4).
%F a(n) = Sum_{k=0..n-1} binomial(n+k, 2*k+1)*2^k. - _Paul Barry_, Nov 30 2004
%F [A004253(n), a(n)] = [1,3; 1,4]^n * [1,0]. - _Gary W. Adamson_, Mar 19 2008
%F a(n+1) = Sum_{k=0..n} Gegenbauer_C(n-k,k+1,2). - _Paul Barry_, Apr 21 2009
%F a(n+1) = Sum_{k=0..n} A101950(n,k)*4^k. - _Philippe Deléham_, Feb 10 2012
%F Product {n >= 1} (1 + 1/a(n)) = (1/3)*(3 + sqrt(21)). - _Peter Bala_, Dec 23 2012
%F Product {n >= 2} (1 - 1/a(n)) = (1/10)*(3 + sqrt(21)). - _Peter Bala_, Dec 23 2012
%F A054493(2*n - 1) = 7 * a(n)^2 for all n in Z. - _Michael Somos_, Jan 22 2017
%F a(n) = -a(-n) for all n in Z. - _Michael Somos_, Jan 22 2017
%F 0 = -1 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. - _Michael Somos_, Jan 22 2017
%F From _Klaus Purath_, Jul 26 2024: (Start)
%F a(n) = 4(a(n-1) + a(n-2)) - a(n-3).
%F a(n) = 6(a(n-1) - a(n-2)) + a(n-3).
%F In general, for all sequences of the form U(n) = P*U(n-1) - U(n-2) the following applies:
%F U(n) = (P-1)*U(n-1) + (P-1)*U(n-2) - U(n-3).
%F U(n) = (P+1)*U(n-1) - (P+1)*U(n-2) + U(n-3). (End)
%e G.f. = x + 5*x^2 + 24*x^3 + 115*x^4 + 551*x^5 + 2640*x^6 + 12649*x^7 + ...
%p A004254:=1/(1-5*z+z**2); # _Simon Plouffe_ in his 1992 dissertation
%t a[n_]:=(MatrixPower[{{1,3},{1,4}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 19 2010 *)
%t a[ n_] := ChebyshevU[2 n - 1, Sqrt[7]/2] / Sqrt[7]; (* _Michael Somos_, Jan 22 2017 *)
%o (PARI) {a(n) = subst(4*poltchebi(n+1) - 10*poltchebi(n), x, 5/2) / 21}; /* _Michael Somos_, Dec 04 2002 */
%o (PARI) {a(n) = imag((5 + quadgen(84))^n) / 2^(n-1)}; /* _Michael Somos_, Dec 04 2002 */
%o (PARI) {a(n) = polchebyshev(n - 1, 2, 5/2)}; /* _Michael Somos_, Jan 22 2017 */
%o (PARI) {a(n) = simplify( polchebyshev( 2*n - 1, 2, quadgen(28)/2) / quadgen(28))}; /* _Michael Somos_, Jan 22 2017 */
%o (Sage) [lucas_number1(n,5,1) for n in range(27)] # _Zerinvary Lajos_, Jun 25 2008
%o (Magma) [ n eq 1 select 0 else n eq 2 select 1 else 5*Self(n-1)-Self(n-2): n in [1..30] ]; // _Vincenzo Librandi_, Aug 19 2011
%Y Partial sums of A004253.
%Y Cf. A000027, A001906, A001353, A003501, A030221. a(n) = sqrt((A003501(n)^2 - 4)/21).
%Y First differences of a(n) are in A004253, partial sums in A089817.
%Y Cf. A004253.
%Y INVERT transformation yields A001109. - _R. J. Mathar_, Sep 11 2008
%Y Cf. A054493, A107905.
%K easy,nonn,changed
%O 0,3
%A _N. J. A. Sloane_