login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table of x AND y, where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),...
96

%I #39 Dec 28 2024 00:07:29

%S 0,0,0,0,1,0,0,0,0,0,0,1,2,1,0,0,0,2,2,0,0,0,1,0,3,0,1,0,0,0,0,0,0,0,

%T 0,0,0,1,2,1,4,1,2,1,0,0,0,2,2,4,4,2,2,0,0,0,1,0,3,4,5,4,3,0,1,0,0,0,

%U 0,0,4,4,4,4,0,0,0,0,0,1,2,1,0,5,6,5,0,1,2,1,0,0,0,2,2,0,0,6,6,0,0,2,2,0,0,0,1,0

%N Table of x AND y, where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),...

%C Or, table of AND(i,j), i >= 0, j >= 0, read by antidiagonals. - _N. J. A. Sloane_, Feb 08 2016

%C Or, table of (i+j-Nimsum(i,j))/2 read by antidiagonals [Winning Ways, p. 75]. - _N. J. A. Sloane_, Feb 22 2019

%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 75.

%H T. D. Noe, <a href="/A004198/b004198.txt">Rows n=0..100 of triangle, flattened</a>

%e The AND(i,j) table (shown without commas or spaces) begins:

%e 0000000000000000000000000...

%e 0101010101010101010101010...

%e 0022002200220022002200220...

%e 0123012301230123012301230...

%e 0000444400004444000044440...

%e 0101454501014545010145450...

%e 0022446600224466002244660...

%e 0123456701234567012345670...

%e 0000000088888888000000008...

%e 0101010189898989010101018...

%e ...

%e The first few antidiagonals are:

%e 0,

%e 0, 0,

%e 0, 1, 0,

%e 0, 0, 0, 0,

%e 0, 1, 2, 1, 0,

%e 0, 0, 2, 2, 0, 0,

%e 0, 1, 0, 3, 0, 1, 0,

%e 0, 0, 0, 0, 0, 0, 0, 0,

%e 0, 1, 2, 1, 4, 1, 2, 1, 0,

%e 0, 0, 2, 2, 4, 4, 2, 2, 0, 0,

%e 0, 1, 0, 3, 4, 5, 4, 3, 0, 1, 0,

%e ...

%e - _N. J. A. Sloane_, Feb 08 2016

%p # Maple code for first M rows and columns of AND(i,j) table

%p M:=24;

%p f1:=n->[seq(ANDnos(i,n),i=0..M-1)];

%p for n from 0 to M-1 do lprint(f1(n)); od:

%p # _N. J. A. Sloane_, Feb 08 2016

%t Table[BitAnd[k, n - k], {n, 0, 20}, {k, 0, n}] // Flatten (* _Indranil Ghosh_, Apr 01 2017 *)

%o (PARI)

%o tabl(nn) = {for(n=0, nn, for(k=0, n, print1(bitand(k, n - k), ", "); ); print(); ); };

%o tabl(20) \\ _Indranil Ghosh_, Apr 01 2017

%o (Python)

%o for n in range(21):

%o print([k&(n - k) for k in range(n + 1)])

%o # _Indranil Ghosh_, Apr 01 2017

%o (C)

%o #include <stdio.h>

%o int main()

%o {

%o int n, k;

%o for (n=0; n<=20; n++){

%o for(k=0; k<=n; k++){

%o printf("%d, ", (k&(n - k)));

%o }

%o printf("\n");

%o }

%o return 0;

%o } /* _Indranil Ghosh_, Apr 01 2017 */

%Y Cf. A003986 (OR) and A003987 (XOR). Cf. also A075173, A075175, A221146.

%K tabl,nonn,look,changed

%O 0,13

%A _David W. Wilson_