login
Triangle of coefficients of Euler polynomials 2^n*E_n(x) (exponents in increasing order).
12

%I #25 Mar 01 2023 11:00:32

%S 1,-1,2,0,-4,4,2,0,-12,8,0,16,0,-32,16,-16,0,80,0,-80,32,0,-192,0,320,

%T 0,-192,64,272,0,-1344,0,1120,0,-448,128,0,4352,0,-7168,0,3584,0,

%U -1024,256,-7936,0,39168,0,-32256,0,10752,0,-2304,512,0,-158720,0

%N Triangle of coefficients of Euler polynomials 2^n*E_n(x) (exponents in increasing order).

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.

%H T. D. Noe, <a href="/A004174/b004174.txt">Rows n = 0..50 of triangle, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerPolynomial.html">Euler Polynomial</a>.

%t Flatten[ Table[ CoefficientList[ 2^n*EulerE[n, x], x], {n, 0, 10}]] (* _Jean-François Alcover_, Jul 21 2011 *)

%Y Cf. A099932.

%K sign,tabl,nice

%O 0,3

%A _N. J. A. Sloane_