login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of planar hexagon trees with n hexagons.
(Formerly M2936)
12

%I M2936 #38 Aug 01 2024 21:50:32

%S 1,1,3,12,68,483,3946,34485,315810,2984570,28907970,285601251,

%T 2868869733,29227904840,301430074416,3141985563575,33059739636198,

%U 350763452126835,3749420616902637,40348040718155170,436827335493148600

%N Number of planar hexagon trees with n hexagons.

%C Number of nonequivalent dissections of a polygon into n hexagons by nonintersecting diagonals up to rotation and reflection. - _Andrew Howroyd_, Nov 20 2017

%C Number of unoriented polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - _Robert A. Russell_, Jan 23 2024

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A004127/b004127.txt">Table of n, a(n) for n = 1..925</a>

%H Malin Christensson, <a href="http://malinc.se/m/ImageTiling.php">Make hyperbolic tilings of images</a>, web page, 2019.

%H L. W. Beineke and R. E. Pippert, <a href="https://doi.org/10.1017/S0017089500002305">On the enumeration of planar trees of hexagons</a>, Glasgow Math. J., 15 (1974), 131-147.

%H L. W. Beineke and R. E. Pippert, <a href="/A004127/a004127.pdf">On the enumeration of planar trees of hexagons</a>, Glasgow Math. J., 15 (1974), 131-147. [Annotated scanned copy]

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%F See Theorem 3 on p. 142 in the Beineke-Pippert paper; also the Maple and Mathematica codes here.

%F a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 13/2)). - _Vaclav Kotesovec_, Mar 13 2016

%F a(n) = A221184(n-1) - A369473(n) = (A221184(n-1) + A143546(n)) / 2 = A369473(n) + A143546(n). - _Robert A. Russell_, Jan 23 2024

%p T := proc(n) if floor(n)=n then binomial(5*n+1,n)/(5*n+1) else 0 fi end: U := proc(n) if n mod 2 = 0 then binomial(5*n/2+1, n/2)/(5*n/2+1) else 6*binomial((5*n+1)/2,(n-1)/2)/(5*n+1) fi end: S := n->T(n)/4/(2*n+1)+T(n/2)/6+(5*n-2)*T((n-1)/3)/6/(2*n+1)+T((n-1)/6)/6+7*U(n)/12: seq(S(n),n=1..25); (Emeric Deutsch)

%t p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* _Robert A. Russell_, Dec 11 2004 *)

%Y Column k=6 of A295260.

%Y Cf. A002294.

%Y Polyominoes: A221184{n-1} (oriented), A369473 (chiral), A143546 (achiral), A005040 {5,oo}, A005419 {7,oo}.

%K nonn

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Emeric Deutsch_, Jan 22 2004