login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of remainders of n mod k, for k = 1, 2, 3, ..., n.
(Formerly M3213)
86

%I M3213 #169 Oct 22 2023 00:44:20

%S 0,0,1,1,4,3,8,8,12,13,22,17,28,31,36,36,51,47,64,61,70,77,98,85,103,

%T 112,125,124,151,138,167,167,184,197,218,198,233,248,269,258,297,284,

%U 325,328,339,358,403,374,414,420,449,454,505,492,529,520,553,578,635,586,645,672

%N Sum of remainders of n mod k, for k = 1, 2, 3, ..., n.

%C Row sums of A051778, A048158. Antidiagonal sums of A051127. - _L. Edson Jeffery_, Mar 03 2012

%C Let u_m(n) = Sum_{k=1..n} (n^m mod k^m) with m integer. As n-->+oo, u_m(n) ~ (n^(m+1))*(1-(1/(m+1))*Zeta(1+1/m)). Proof: using Riemann sums, we have u_m(n) ~ (n^(m+1))*int(((1/x)[nonascii character here])*(1-floor(x^m)/(x^m)),x=1..+oo) and the result follows. - _Yalcin Aktar_, Jul 30 2008 [x is the real variable of integration. The nonascii character (which was illegible in the original message) is probably some form of multiplication sign. I suggest that we leave it the way it is for now. - _N. J. A. Sloane_, Dec 07 2014]

%C Also the alternating row sums of A236112. - _Omar E. Pol_, Jan 26 2014

%C If n is prime then a(n) = a(n-1) + n - 2. - _Omar E. Pol_, Mar 19 2014

%C If n is a power of 2 greater than 1, then a(n) = a(n-1). - _David Morales Marciel_, Oct 21 2015

%C It appears that if n is an even perfect number, then a(n) = a(n-1) - 1. - _Omar E. Pol_, Oct 21 2015

%C Partial sums of A235796. - _Omar E. Pol_, Jun 26 2016

%C Aside from a(n) = a(n-1) for n = 2^m, the only values appearing more than once among the first 6*10^8 terms are those at n = 38184 +- 1, 458010 +- 1, 776112 +- 1, 65675408 +- 1, and 113393280 +- 2. - _Trevor Cappallo_, Jun 07 2021

%C The off-by-1 terms in the comment above are the terms of A068077. Proof: If a(n-1) = a(n+1), then (n-1)^2 - Sum_{k=1..n-1} sigma(k) = (n+1)^2 - Sum_{k=1..n+1} sigma(k) via the formula; rearranging terms gives sigma(n)+sigma(n+1)=4n. - _Lewis Chen_, Sep 24 2021

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane, <a href="/A004125/b004125.txt">Table of n, a(n) for n = 1..2000</a> (first 1000 terms from T. D. Noe)

%H Jeffrey Shallit, <a href="http://www.jstor.org/stable/2321999">Problem E2817</a>, Amer. Math. Monthly, vol. 87, p 137, 1980.

%F a(n) = n^2 - Sum_{k=1..n} sigma(k) = A000290(n) - A024916(n), hence asymptotically a(n) = n^2*(1-Pi^2/12) + O(n*log(n)^(2/3)). - _Benoit Cloitre_, Apr 28 2002. Asymptotics corrected/improved by _Charles R Greathouse IV_, Feb 22 2015

%F a(n) = A008805(n-3) + A049798(n-1), for n > 2. - _Carl Najafi_, Jan 31 2013

%F a(n) = A000217(n-1) - A153485(n). - _Omar E. Pol_, Jan 28 2014

%F G.f.: x^2/(1-x)^3 - (1-x)^(-1) * Sum_{k>=1} k*x^(2*k)/(1-x^k). - _Robert Israel_, Aug 13 2015

%F a(n) = Sum_{i=1..n} (n mod i). - _Wesley Ivan Hurt_, Sep 15 2017

%e a(5) = 4. The remainder when 5 is divided by 2,3,4 respectively is 1,2,1 and their sum = 4.

%p A004125 := n -> add( modp(n,k), k=2..n); /* much faster and unambiguous; "a mod b" may be mods(a,b) */ # _M. F. Hasler_, Nov 22 2007

%t Table[Sum[Mod[n,k],{k,2,n-1}],{n,70}] (* _Harvey P. Dale_, Nov 23 2011 *)

%t Accumulate[Table[2n-1-DivisorSigma[1,n],{n,70}]] (* _Harvey P. Dale_, Jul 11 2014 *)

%o (PARI) A004125(n)=sum(k=2,n,n%k) \\ _M. F. Hasler_, Nov 22 2007

%o (Haskell)

%o a004125 n = sum $ map (mod n) [1..n]

%o -- _Reinhard Zumkeller_, Jan 28 2011

%o (Magma) [&+[n mod r: r in [1..n]]: n in [1..70]]; // _Bruno Berselli_, Jul 06 2014

%o (GAP) List([1..70],n->n^2-Sum([1..n],k->Sigma(k))); # _Muniru A Asiru_, Mar 28 2018

%o (Python)

%o def a(n): return sum(n%k for k in range(1, n))

%o print([a(n) for n in range(1, 63)]) # _Michael S. Branicky_, Jun 08 2021

%o (Python)

%o from math import isqrt

%o def A004125(n): return n**2+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # _Chai Wah Wu_, Oct 21 2023

%Y Cf. A000290, A006218, A023196, A048158, A050482, A051778, A120444 (first differences).

%K nonn,easy,nice

%O 1,5

%A _N. J. A. Sloane_, _Jeffrey Shallit_

%E Edited by _M. F. Hasler_, Apr 18 2015