login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Discriminant of n-th cyclotomic polynomial.
(Formerly M2383)
11

%I M2383 #63 Oct 29 2023 10:51:00

%S 1,1,-3,-4,125,-3,-16807,256,-19683,125,-2357947691,144,1792160394037,

%T -16807,1265625,16777216,2862423051509815793,-19683,

%U -5480386857784802185939,4000000,205924456521,-2357947691,-39471584120695485887249589623,5308416

%N Discriminant of n-th cyclotomic polynomial.

%C n and a(n) have the same prime factors, except when 2 divides n but 4 does not divide n, then n/2 and a(n) have the same prime factors.

%C a(n) is negative <=> phi(n) == 2 (mod 4) <=> n = 4 or n is of the form p^e or 2*p^e, where p is a prime congruent to 3 modulo 4. - _Jianing Song_, May 17 2021

%D E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 91.

%D D. Marcus, Number Fields. Springer-Verlag, 1977, p. 27.

%D P. Ribenboim, Classical Theory of Algebraic Numbers, Springer, 2001, pp. 118-9 and p. 297.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Gheorghe Coserea, <a href="/A004124/b004124.txt">Table of n, a(n) for n = 1..388</a> (first 100 terms from T. D. Noe)

%H Mohammad K. Azarian, <a href="http://ijpam.eu/contents/2007-36-2/9/9.pdf">On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials</a>, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.

%H J. Shallit, <a href="/A004124/a004124.pdf">Letter to N. J. A. Sloane</a>, Mar 25 1980.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolynomialDiscriminant.html">Polynomial Discriminant</a>.

%F Sign(a(n)) = (-1)^(phi(n)*(phi(n)-1)/2). Magnitude: For prime p, a(p) = p^(p-2). For n = p^e, a prime power, a(n) = p^(((p-1)*e-1)*p^(e-1)). For n = Product_{i=1..k} p_i^e_i, a product of prime powers, a(n) = Product_{i=1..k} a(p_i^e_i)^phi(n/p_i^e_i).

%F a(n) = Sign(a(n))*(n^phi(n))/(Product_{p|n, p prime} p^(phi(n)/(p-1))). See the Ribenboim reference, p. 297, eq.(1), with the sign taken from the previous formula and n=2 included. - _Wolfdieter Lang_, Aug 03 2011

%e a(100) = 2^40 * 5^70.

%e a(100) = ((-1)^(40*39/2))*(100^40)/(2^(40/1)*5^(40/4)) = +2^40*5^70. - _Wolfdieter Lang_, Aug 03 2011

%t PrimePowers[n_] := Module[{f, t}, f=FactorInteger[n]; t=Transpose[f]; First[t]^Last[t]]; app[pp_] := Module[{f, p, e}, f=FactorInteger[pp]; p=f[[1, 1]]; e=f[[1, 2]]; p^(((p-1)e-1) p^(e-1))]; SetAttributes[app, Listable]; a[n_] := Module[{pp, phi=EulerPhi[n]}, If[n==1, 1, pp=PrimePowers[n]; (-1)^(phi*(phi-1)/2) Times@@(app[pp]^EulerPhi[n/pp])]]; Table[a[n], {n, 24}]

%t a[n_] := Discriminant[ Cyclotomic[n, x], x]; Table[a[n], {n, 1, 24}] (* _Jean-François Alcover_, Dec 06 2011 *)

%o (PARI) a(n) = poldisc(polcyclo(n));

%o (PARI)

%o a(n) = {

%o my(f = factor(n), fsz = matsize(f)[1],

%o g = prod(k=1, fsz, f[k,1]),

%o h = prod(k=1, fsz, f[k,1]-1), phi = (n\g)*h,

%o r = prod(k=1, fsz, f[k,1] ^ ((phi\(f[k,1]-1)) * (f[k,2]*(f[k,1]-1)-1))));

%o return((1-2*((phi\2)%2)) * r);

%o };

%o vector(24, n, a(n)) \\ _Gheorghe Coserea_, Oct 31 2016

%K sign,easy,nice

%O 1,3

%A _N. J. A. Sloane_

%E Edited by _T. D. Noe_, Sep 30 2003