login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A004121
Generalized weak orders on n points.
(Formerly M2095)
4
2, 16, 208, 3968, 109568, 4793344, 410662912, 82657083392, 38274970222592, 37590755515826176, 75458309991776124928, 305873605165090925969408, 2491832958314452159507202048, 40704585435508852018947014262784
OFFSET
1,1
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
C. G. Wagner, Enumeration of generalized weak orders. Arch. Math. (Basel) 39 (1982), no. 2, 147-152.
LINKS
C. G. Wagner, Enumeration of generalized weak orders, Preprint, 1980. [Annotated scanned copy]
C. G. Wagner and N. J. A. Sloane, Correspondence, 1980
FORMULA
E.g.f.: 1/(1 - Sum_{i >= 1} 2^binomial(i+1, 2)*x^i/i!).
MATHEMATICA
max = 14; f[x_] := 1/(1 - Sum[(2^(i*(i+1)/2)*x^i)/i!, {i, 1, max}]); Drop[ CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!, 1] (* Jean-François Alcover, Oct 21 2011, after g.f. *)
CROSSREFS
Cf. A004122, A004123, A000670 (asymmetric generalized weak orders on n points).
Sequence in context: A138429 A087923 A222523 * A188600 A206930 A206865
KEYWORD
nonn,nice,easy
EXTENSIONS
Formula and more terms from Vladeta Jovovic, Mar 27 2001
STATUS
approved