login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1; thereafter a(n) = 3*2^(n-1) + 1.
(Formerly M3308)
20

%I M3308 #87 Jul 13 2023 09:19:50

%S 1,4,7,13,25,49,97,193,385,769,1537,3073,6145,12289,24577,49153,98305,

%T 196609,393217,786433,1572865,3145729,6291457,12582913,25165825,

%U 50331649,100663297,201326593,402653185,805306369,1610612737,3221225473,6442450945,12884901889

%N a(0) = 1; thereafter a(n) = 3*2^(n-1) + 1.

%C Also Pisot sequence L(4,7) (cf. A008776).

%C Alternatively, define the sequence S(a(1),a(2)) by: a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n > 0. This is S(4,7).

%C a(n) = number of terms of the arithmetic progression with first term 2^(2n-1) and last term 2^(2n+1). So common difference is 2^n. E.g., a(2)=7 corresponds to (8,12,16,20,24,28,32). - _Augustine O. Munagi_, Feb 21 2007

%C Equals binomial transform of [1, 3, 0, 3, 0, 3, 0, 3, ...]. - _Gary W. Adamson_, Aug 27 2010

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A004119/b004119.txt">Table of n, a(n) for n = 0..1000</a>

%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993

%H S. W. Golomb, <a href="http://www.jstor.org/stable/2005337">Properties of the sequence 3.2^n+1</a>, Math. Comp., 30 (1976), 657-663.

%H S. W. Golomb, <a href="/A004119/a004119.pdf">Properties of the sequence 3.2^n+1</a>, Math. Comp., 30 (1976), 657-663. [Annotated scanned copy]

%H A. O. Munagi and T. Shonhiwa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Shonhiwa/shonhiwa13.html"> On the partitions of a number into arithmetic progressions</a>, J. Integer Sequences, 11 (2008), #08.5.4.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3, -2).

%H <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>

%F a(n) = 3a(n-1) - 2a(n-2).

%F For n>3, a(3)=13, a(n)= a(n-1)+2*floor(a(n-1)/2). - _Benoit Cloitre_, Aug 14 2002

%F For n>=1, a(n) = A049775(n+1)/2^(n-2). For n>=2, a(n) = 2a(n-1)-1; see also A000051. - _Philippe Deléham_, Feb 20 2004

%F O.g.f.: -(-1-x+3*x^2)/((2*x-1)*(x-1)). - _R. J. Mathar_, Nov 23 2007

%F For n>0, a(n) = 2*a(n-1)-1. - _Vincenzo Librandi_, Dec 16 2015

%F E.g.f.: exp(x)*(1 + 3*sinh(x)). - _Stefano Spezia_, May 06 2023

%p A004119:=-(-1-z+3*z**2)/(2*z-1)/(z-1); # _Simon Plouffe_ in his 1992 dissertation

%t s=4;lst={1,s};Do[s=s+(s-1);AppendTo[lst,s],{n,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 30 2009 *)

%t Prepend[Table[3*2^n + 1, {n, 0, 32}], 1] (* or *)

%t {1}~Join~LinearRecurrence[{3, -2}, {4, 7}, 33] (* _Michael De Vlieger_, Dec 16 2015 *)

%o (PARI) a(n)=3<<n+1 \\ _Charles R Greathouse IV_, Sep 28 2015

%o (Magma) [1] cat [n le 1 select 4 else 2*Self(n-1)-1: n in [1..40]]; // _Vincenzo Librandi_, Dec 16 2015

%Y Cf. A049988, A049775, A000051, A008776.

%Y A181565 is an essentially identical sequence.

%Y For primes see A002253 and A039687.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, _R. K. Guy_

%E Edited by _N. J. A. Sloane_, Dec 16 2015 at the suggestion of _Bruno Berselli_