login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).
(Formerly M1504)
33

%I M1504 #85 Sep 14 2024 13:26:42

%S 1,1,1,2,5,16,78,588,8047,205914,10014882,912908876,154636289460,

%T 48597794716736,28412296651708628,31024938435794151088,

%U 63533059372622888758054,244916078509480823407040988,1783406527599529094009748567708,24605674623474428415849066062642456

%N Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).

%C a(n) is also the number of unlabeled mating graphs with n nodes. A mating graph has no two vertices with identical sets of neighbors. - _Tanya Khovanova_, Oct 23 2008

%D F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.

%D F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).

%D R. W. Robinson, personal communication.

%D R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Andrew Howroyd, <a href="/A004110/b004110.txt">Table of n, a(n) for n = 0..50</a> (terms 0..26 from R. W. Robinson)

%H David Cook II, <a href="http://arxiv.org/abs/1306.0140">Nested colourings of graphs</a>, arXiv preprint arXiv:1306.0140 [math.CO], 2013.

%H Ira M. Gessel and Ji Li, <a href="https://doi.org/10.1016/j.jcta.2010.03.009">Enumeration of point-determining graphs</a>, J. Combinatorial Theory Ser. A 118 (2011), 591-612.

%H Hemanshu Kaul and Jeffrey A. Mudrock, <a href="https://arxiv.org/abs/2409.06063">Counting List Colorings of Unlabeled Graphs</a>, arXiv:2409.06063 [math.CO], 2024. See p. 6.

%H R. J. Mathar, <a href="/A004110/a004110_1.pdf">Illustrations for n=1..5 nodes</a>.

%H Ronald C. Read, <a href="https://oeis.org/A006023/a006023.pdf">The enumeration of mating-type graphs</a>, Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.

%H R. W. Robinson, <a href="/A004110/a004110_2.pdf">Graphs without endpoints - computer printout</a>.

%H N. J. A. Sloane, <a href="/A004110/a004110.pdf">Illustration of a(0)-a(5)</a>.

%t permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];

%t edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];

%t a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;

%t Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Oct 27 2018, after _Andrew Howroyd_ *)

%o (PARI) \\ Compare A000088.

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}

%o a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ _Andrew Howroyd_, Sep 09 2018

%Y Row sums of A123551.

%Y Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A006024 (number of labeled mating graphs with n nodes), A129584 (bi-point-determining graphs).

%Y If isolated nodes are forbidden, see A261919.

%Y Cf. A000088.

%K nonn

%O 0,4

%A _N. J. A. Sloane_