Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Dec 28 2024 00:06:48
%S 1,4,23,176,1689,19524,264207,4098240,71697105,1396704420,29985521895,
%T 703416314160,17901641997225,491250187505700,14459713484342175,
%U 454441401368236800,15188465029114325025,537928935889764226500
%N Scaled sums of odd reciprocals: a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
%C n-th elementary symmetric function of the first n+1 odd positive integers.
%C Also the determinant of the n X n matrix given by m(i,j) = 2*i + 2 = if i = j and otherwise 1. For example, Det[{{4, 1, 1, 1, 1, 1}, {1, 6, 1, 1, 1, 1}, {1, 1, 8, 1, 1, 1}, {1, 1, 1, 10, 1, 1}, {1, 1, 1, 1, 12, 1}, {1, 1, 1, 1, 1, 14}}] = 264207 = a(6). - _John M. Campbell_, May 20 2011
%H Seiichi Manyama, <a href="/A004041/b004041.txt">Table of n, a(n) for n = 0..403</a>
%H J. Courtiel, K. Yeats, <a href="http://arxiv.org/abs/1603.08596">Terminal chords in connected chord diagrams</a>, arXiv:1603.08596 [math.CO], 2016; e.g.f. in Remark 1 B_1(z).
%F a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
%F a(n) is coefficient of x^(2*n+2) in (arctanh x)^2, multiplied by (n + 1)*(2*n + 1)!!.
%F a(n) = Sum_{i=k+1..n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 1, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
%F a(n) ~ 2^(1/2)*log(n)*n*(2n/e)^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
%F E.g.f.: 1/2*(1 - 2*x)^(-3/2)*(2 - log(1 - 2*x)). - _Vladeta Jovovic_, Feb 19 2003
%F Sum_{n>=1} a(n-1)/(n!*n*2^n) = (Pi/2)^2. - _Philippe Deléham_, Aug 12 2003
%F For n >= 1, a(n-1) = 2^(n-1)*n!*(Sum_{k=0..n-1} (-1)^k*binomial(1/2, k)/(n - k)). - _Milan Janjic_, Dec 14 2008
%F Recurrence: a(n) = 4*n*a(n-1) - (2*n - 1)^2*a(n-2). - _Vladimir Reshetnikov_, Oct 13 2016
%e (arctanh(x))^2 = x^2 + 2/3*x^4 + 23/45*x^6 + 44/105*x^8 + ...
%t Table[(-1)^(n + 1)* Sum[(-2)^(n - k) k (-1)^(n - k) StirlingS1[n + 1, k + 1], {k, 0, n}], {n, 1, 18}] (* _Zerinvary Lajos_, Jul 08 2009 *)
%t FunctionExpand@Table[(2 n + 1)!! (Log[4] + HarmonicNumber[n + 1/2])/2, {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 13 2016 *)
%Y Cf. A000254, A024199, A049034.
%Y Cf. A002428.
%Y From _Johannes W. Meijer_, Jun 08 2009: (Start)
%Y Equals second left hand column of A028338 triangle.
%Y Equals second right hand column of A109692 triangle.
%Y Equals second left hand column of A161198 triangle divided by 2.
%Y (End)
%K nonn
%O 0,2
%A Joe Keane (jgk(AT)jgk.org)