Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3227 #33 Jul 07 2017 03:45:09
%S 4,4,8,12,4,12,12,12,16,16,8,8,28,12,20,24,8,16,28,12,16,28,20,32,20,
%T 16,16,32,20,24,28,8,36,44,12,32,36,16,24,20,28,20,56,28,16,40,20,40,
%U 44,12,36,40,20,32,40,16,24,60,32,36,40,24,32,60,24,40,24,20,60,36,24,32,56,32
%N Theta series of b.c.c. lattice with respect to deep hole.
%D Ono and Skinner, Ann. Math., 147 (1998), 453-470.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
%H T. D. Noe, <a href="/A004024/b004024.txt">Table of n, a(n) for n = 0..1000</a>
%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds3.html">Home page for this lattice</a>
%H <a href="/index/Ba#bcc">Index entries for sequences related to b.c.c. lattice</a>
%F 4*eta(32z)^4/eta(8z) = 4*Sum q^(x^2+2y^2+2z^2), x, y, z >= 1 and odd.
%t max = 73; 4*CoefficientList[ Series[ Product[ (1-q^(4k))^4 / (1-q^k), {k, 1, max}], {q, 0, max}], q] (* _Jean-François Alcover_, Feb 10 2012, after A045831 *)
%t terms = 74; QP = QPochhammer; s = 4 QP[z^4]^4/QP[z] + O[z]^terms; CoefficientList[s, z] (* _Jean-François Alcover_, Jul 07 2017 *)
%Y Equals 4*A045831.
%K nonn,easy,nice
%O 0,1
%A _N. J. A. Sloane_