Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4816 #94 Nov 05 2024 12:12:55
%S 11,1111111111111111111,11111111111111111111111
%N Primes of the form (10^k - 1)/9. Also called repunit primes or repdigit primes.
%C The next term corresponds to k = 317 and is too large to include: see A004023.
%C Also called repunit primes or prime repunits.
%C Also, primes with digital product = 1.
%C The number of 1's in these repunits must also be prime. Since the number of 1's in (10^k-1)/9 is k, if k = p*m then (10^(p*m)-1) = (10^p)^m-1 => (10^p-1)/9 = q and q divides (10^k-1). This follows from the identity a^k - b^k = (a-b)*(a^(k-1) + a^(k-2)*b + ... + b^(k-1)). - _Cino Hilliard_, Dec 23 2008
%C A subset of A020449, ..., A020457, A036953, ..., cf. link to OEIS index. - _M. F. Hasler_, Jul 27 2015
%C The terms in this sequence, except 11 which is not Brazilian, are prime repunits in base ten, so they are Brazilian primes belonging to A085104 and A285017. - _Bernard Schott_, Apr 08 2017
%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 11. Graham, Knuth and Patashnik, Concrete mathematics, Addison-Wesley, 1994; see p. 146, problem 22.
%D M. Barsanti, R. Dvornicich, M. Forti, T. Franzoni, M. Gobbino, S. Mortola, L. Pernazza and R. Romito, Il Fibonacci N. 8 (included in Il Fibonacci, Unione Matematica Italiana, 2011), 2004, Problem 8.10.
%D Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A004022/b004022.txt">Table of n, a(n) for n = 1..5</a>
%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
%H Ernest G. Hibbs, <a href="https://www.proquest.com/openview/4012f0286b785cd732c78eb0fc6fce80">Component Interactions of the Prime Numbers</a>, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
%H Dmytro S. Inosov and Emil Vlasák, <a href="https://arxiv.org/abs/2410.21427">Cryptarithmically unique terms in integer sequences</a>, arXiv:2410.21427 [math.NT], 2024. See p. 18.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/repunit">Factorizations of 11...11 (Repunit)</a>.
%H D. H. Lehmer, <a href="http://dx.doi.org/10.1090/S0002-9904-1929-04748-7">On the number (10^23-1)/9</a>, Bull. Amer. Math. Soc. 35 (1929), 349-350.
%H James Maynard and Brady Haran, <a href="https://www.youtube.com/watch?v=eeoBCS7IEqs">Primes without a 7</a>, Numberphile video (2019)
%H Andy Steward, <a href="http://www.users.globalnet.co.uk/~aads/primes.html">Prime Generalized Repunits</a>
%H S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a>
%H <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a>.
%F a(n) = A002275(A004023(n)).
%t lst={}; Do[If[PrimeQ[p = (10^n - 1)/9], AppendTo[lst, p]], {n, 10^2}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 22 2008 *)
%t Select[Table[(10^n - 1) / 9, {n, 500}], PrimeQ] (* _Vincenzo Librandi_, Nov 08 2014 *)
%t Select[Table[FromDigits[PadRight[{},n,1]],{n,30}],PrimeQ] (* _Harvey P. Dale_, Apr 07 2018 *)
%o (PARI) forprime(x=2,20000,if(ispseudoprime((10^x-1)/9),print1((10^x-1)/9","))) \\ _Cino Hilliard_, Dec 23 2008
%o (Magma) [a: n in [0..300] | IsPrime(a) where a is (10^n - 1) div 9 ]; // _Vincenzo Librandi_, Nov 08 2014
%o (Python)
%o from sympy import isprime
%o from itertools import count, islice
%o def agen(): # generator of terms
%o yield from (t for t in (int("1"*k) for k in count(1)) if isprime(t))
%o print(list(islice(agen(), 4))) # _Michael S. Branicky_, Jun 09 2022
%Y A116692 is another version of repunit primes or repdigit primes. - _N. J. A. Sloane_, Jan 22 2023
%Y See A004023 for the number of 1's.
%Y Cf. A046413.
%K nonn,nice,bref
%O 1,1
%A _N. J. A. Sloane_
%E Edited by _Max Alekseyev_, Nov 15 2010
%E Name expanded by _N. J. A. Sloane_, Jan 22 2023