login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of E_6 lattice.
(Formerly M5349)
4

%I M5349 #29 Jan 11 2018 01:09:04

%S 1,72,270,720,936,2160,2214,3600,4590,6552,5184,10800,9360,12240,

%T 13500,17712,14760,25920,19710,26064,28080,36000,25920,47520,37638,

%U 43272,45900,59040,46800,75600,51840,69264,73710,88560,62208,108000,85176

%N Theta series of E_6 lattice.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A004007/b004007.txt">Table of n, a(n) for n = 0..1000</a>

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.NT/0509316">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/E6.html">Home page for this lattice</a>

%F Expansion of eta(q)^9 / eta(q^3)^3 + 81*q * eta(q^3)^9 / eta(q)^3 in powers of q.

%F Expansion of a(q)^3 + 2*c(q)^3 in powers of q where a(), c() are cubic AGM theta functions. - _Michael Somos_, Oct 24 2006

%t a[ n_] := SeriesCoefficient[ QPochhammer[ q]^9 / QPochhammer[ q^3]^3 + 81 q QPochhammer[ q^3]^9 / QPochhammer[ q]^3, {q, 0, n}]; (* _Michael Somos_, Feb 19 2015 *)

%t terms = 37; f[q_] = LatticeData["E6", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}] // Normal // Simplify[#, q > 0]&; (List @@ s)[[1 ;; terms]] /. q -> 1 (* _Jean-François Alcover_, Jul 04 2017 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^9 / eta(x^3 + A)^3 + 81 * x * eta(x^3 + A)^9 / eta(x + A)^3, n))}; /* _Michael Somos_, Oct 24 2006 */

%Y Cf. A005129 (dual lattice).

%K nonn

%O 0,2

%A _N. J. A. Sloane_