login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.
24

%I #50 Sep 08 2022 08:44:32

%S 1,1,0,1,1,0,1,2,1,0,1,3,4,1,0,1,4,9,8,1,0,1,5,16,27,16,1,0,1,6,25,64,

%T 81,32,1,0,1,7,36,125,256,243,64,1,0,1,8,49,216,625,1024,729,128,1,0,

%U 1,9,64,343,1296,3125,4096,2187,256,1,0,1,10,81,512,2401,7776,15625,16384,6561,512,1,0

%N Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

%C If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - _Robert A. Russell_, Nov 08 2018

%C T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - _Geoffrey Critzer_, Apr 03 2020

%H T. D. Noe, <a href="/A003992/b003992.txt">Rows n = 0..50 of triangle, flattened</a>

%F E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - _Paul D. Hanna_, Oct 22 2004

%F E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - _Franklin T. Adams-Watters_, Jun 23 2006

%e Rows begin:

%e [1, 0, 0, 0, 0, 0, 0, 0, ...],

%e [1, 1, 1, 1, 1, 1, 1, 1, ...],

%e [1, 2, 4, 8, 16, 32, 64, 128, ...],

%e [1, 3, 9, 27, 81, 243, 729, 2187, ...],

%e [1, 4, 16, 64, 256, 1024, 4096, 16384, ...],

%e [1, 5, 25, 125, 625, 3125, 15625, 78125, ...],

%e [1, 6, 36, 216, 1296, 7776, 46656, 279936, ...],

%e [1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...

%t Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten

%o (PARI) T(n,k) = (n-k)^k \\ _Charles R Greathouse IV_, Feb 07 2017

%o (Magma) [[(n-k)^k: k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Nov 08 2018

%Y Rows 0-49 are A000007, A000012, A000079, A000244, A000302, A000351, A000400, A000420, A001018, A001019, A011557, A001020, A001021, A001022, A001023, A001024, A001025, A001026, A001027, A001029, A009964-A009992, A087752.

%Y Columns 0-26 are A000012, A001477, A000290, A000578, A000583, A000584, A001014, A001015, A001016, A001017, A008454, A008455, A008456, A010801-A010813, A089081.

%Y Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.

%Y Cf. A099555.

%Y Transpose is A004248. See A051128, A095884, A009999 for other versions.

%Y Cf. A277504 (unoriented), A293500 (chiral).

%K easy,nice,nonn,tabl

%O 0,8

%A _Marc LeBrun_

%E More terms from _David W. Wilson_

%E Edited by _Paul D. Hanna_, Oct 22 2004