Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Apr 01 2018 18:10:19
%S 1,2,2,3,2,3,4,6,6,4,5,4,3,4,5,6,10,12,12,10,6,7,6,15,4,15,6,7,8,14,6,
%T 20,20,6,14,8,9,8,21,12,5,12,21,8,9,10,18,24,28,30,30,28,24,18,10,11,
%U 10,9,8,35,6,35,8,9,10,11,12,22,30,36,40,42,42,40,36,30,22,12,13,12,33,20,45,24
%N Table of lcm(x,y), read along antidiagonals.
%C A(x,x) = x on the diagonal. - _Reinhard Zumkeller_, Aug 05 2012
%H T. D. Noe, <a href="/A003990/b003990.txt">First 100 antidiagonals of array, flattened</a>
%H Kival Ngaokrajang, <a href="/A003990/a003990.pdf">Illustration of pattern</a>, where terms with least significant decimal digit equal to zero are colored.
%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%e The symmetric array is lcm(x,y) = lcm(y,x):
%e 1 2 3 4 5 6 7 8 9 10 ...
%e 2 2 6 4 10 6 14 8 18 10 ...
%e 3 6 3 12 15 6 21 24 9 30 ...
%e 4 4 12 4 20 12 28 8 36 20 ...
%e 5 10 15 20 5 30 35 40 45 10 ...
%e 6 6 6 12 30 6 42 24 18 30 ...
%e 7 14 21 28 35 42 7 56 63 70 ...
%e 8 8 24 8 40 24 56 8 72 40 ...
%e 9 18 9 36 45 18 63 72 9 90 ...
%e 10 10 30 20 10 30 70 40 90 10 ...
%t Table[ LCM[x-y, y], {x, 1, 14}, {y, 1, x-1}] // Flatten (* _Jean-François Alcover_, Aug 20 2013 *)
%o (Haskell)
%o a003990 x y = a003990_adiag x !! (y-1)
%o a003990_adiag n = a003990_tabl !! (n-1)
%o a003990_tabl = zipWith (zipWith lcm) a002260_tabl $ map reverse a002260_tabl
%o -- _Reinhard Zumkeller_, Aug 05 2012
%o (PARI) A(x,y)=lcm(x,y) \\ _Charles R Greathouse IV_, Feb 06 2017
%Y Cf. A003989, A003991, A051173.
%Y A(x, y) = A075174(A003986(A075173(x), A075173(y))) = A075176(A003986(A075175(x), A075175(y))).
%Y Antidiagonal sums are in A006580.
%Y Cf. A002260.
%K tabl,nonn,easy,nice,look
%O 1,2
%A _Marc LeBrun_