Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #169 Jun 13 2024 11:38:18
%S 1,4,12,36,108,324,972,2916,8748,26244,78732,236196,708588,2125764,
%T 6377292,19131876,57395628,172186884,516560652,1549681956,4649045868,
%U 13947137604,41841412812,125524238436,376572715308,1129718145924
%N Expansion of (1+x)/(1-3*x).
%C Coordination sequence for infinite tree with valency 4.
%C The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
%C a(n) is the number of nonreversing random walks of the length of n edges on a two-dimensional square lattice, all beginning at a fixed point P. - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005
%C Binomial transform of {1, 3, 5, 11, 21, 43, ...}, see A001045. Binomial transform is {1, 5, 21, 85, 341, 1365, ...}, see A002450. - _Philippe Deléham_, Jul 22 2005
%C For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3} we have f(x_1) <> y_1 and f(x_2) <> y_2. - _Milan Janjic_, Apr 19 2007
%C Equals row sums of triangle A143865. - _Gary W. Adamson_, Sep 04 2008
%C Equals INVERT transform of the odd integers = 1/(1 - x - 3x^2 - 5x^3 - ...). - _Gary W. Adamson_, Jul 27 2009
%C a(n) is the number of generalized compositions of n+1 when there are 2 *i-1 different types of the part i, (i=1,2,...). - _Milan Janjic_, Aug 26 2010
%C Number of length-n strings of 4 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - _Joerg Arndt_, Oct 11 2012
%C The sequence is the INVERTi transform of A015448: (1, 5, 21, 89, 377, ...). - _Gary W. Adamson_, Aug 06 2016
%C Let D(m) = {d(m,i)}, i = 1..q, denote the set of the q divisors of a number m, and consider s1(m) and s2(m) the sums of the divisors that are congruent to 1 and 2 (mod 3) respectively. For n > 0, the sequence a(n) lists the numbers m such that s1(m) = 5 and s2(m) = 2. - _Michel Lagneau_, Feb 09 2017
%C a(n) is the number of quaternary sequences of length n such that no two consecutive terms have distance 2. - _David Nacin_, May 31 2017
%C Also the number of maximal cliques in the n-Sierpinski sieve graph. - _Eric W. Weisstein_, Dec 01 2017
%C Number of 3-permutations of n elements avoiding the patterns 231, 321. See Bonichon and Sun. - _Michel Marcus_, Aug 19 2022
%H T. D. Noe, <a href="/A003946/b003946.txt">Table of n, a(n) for n = 0..200</a>
%H Feryal Alayont and Evan Henning, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Alayont/ala4.html">Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
%H Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, <a href="https://arxiv.org/abs/1707.07798">(an + b)-color compositions</a>, arXiv:1707.07798 [math.CO], 2017.
%H Nicolas Bonichon and Pierre-Jean Morel, <a href="https://arxiv.org/abs/2202.12677">Baxter d-permutations and other pattern avoiding classes</a>, arXiv:2202.12677 [math.CO], 2022.
%H D. J. Broadhurst, <a href="http://arXiv.org/abs/hep-th/9604128">On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory</a>, arXiv:hep-th/9604128, 1996.
%H John Elias, <a href="/A003946/a003946.png">Illustration: Sierpinski Hexagrams</a>
%H I. M. Gessel and Ji Li, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Gessel/gessel6.html">Compositions and Fibonacci identities</a>, J. Int. Seq. 16 (2013) 13.4.5
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=305">Encyclopedia of Combinatorial Structures 305</a>
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>
%H Amya Luo, <a href="https://math.dartmouth.edu/theses/undergrad/2024/Luo-thesis.pdf">Pattern Avoidance in Nonnesting Permutations</a>, Undergraduate Thesis, Dartmouth College (2024). See p. 3.
%H A. M. Nemirovsky et al., <a href="http://dx.doi.org/10.1007/BF01049010">Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers</a>, J. Statist. Phys., 67 (1992), 1083-1108.
%H Nathan Sun, <a href="https://arxiv.org/abs/2208.08506">On d-permutations and Pattern Avoidance Classes</a>, arXiv:2208.08506 [math.CO], 2022.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalClique.html">Maximal Clique</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiSieveGraph.html">Sierpinski Sieve Graph</a>
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (3).
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F a(n) = floor(4*3^(n-1)). - _Michael Somos_, Jun 18 2002
%F a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 2. - _Philippe Deléham_, Jul 10 2005
%F The Hankel transform of this sequence is [1,-4,0,0,0,0,0,0,0,0,...]. - _Philippe Deléham_, Nov 21 2007
%F a(n + 1) = (((1 + sqrt(-11))/2)^n + ((1 - sqrt(-11))/2)^n)^2 - (((1 + sqrt(-11))/2)^n - ((1 - sqrt(-11))/2)^n)^2. - _Raphie Frank_, Dec 07 2015
%F From _Mario C. Enriquez_, Apr 01 2017: (Start)
%F (L(a(n+k)) - 1)/a(n) reduces to the form C/a(n-1), where n > 1, k >= 0, L(a(n)) is the a(n)-th Lucas number and C = (L(a(n+k)) - 1)/3.
%F (L(a(n+k)) - 1)/3 mod (L(a(n)) - 1)/3 = (L(a(n)) - 1)/3 - 1, where n >= 1, k >= 0 and L(a(n)) is the a(n)-th Lucas number. (End)
%e G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 108*x^4 + 324*x^5 + 972*x^6 + 2916*x^7 + ...
%p if n = 0 then 1 else 4*3^(n-1); fi;
%t Join[{1}, 4 3^Range[0, 30]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 14 2009 *)
%t Join[{1}, NestList[3# &, 4, 30]] (* _Harvey P. Dale_, Nov 30 2011 *)
%t CoefficientList[Series[(1 + x)/(1 - 3 x), {x, 0, 30}], x] (* _Vincenzo Librandi_, Dev 11 2012 *)
%t Join[{1}, LinearRecurrence[{3}, {4}, 20]] (* _Eric W. Weisstein_, Dec 01 2017 *)
%o (PARI) {a(n) = if( n<1, n==0, 4 * 3^(n-1))}; /* _Michael Somos_, Jun 18 2002 */
%o (PARI) Vec((1+x)/(1-3*x) + O(x^100)) \\ _Altug Alkan_, Dec 07 2015
%o (Maxima) A003946[n]:=if n<1 then 1 else 4*3^(n-1)$
%o makelist(A003946[n],n,0,30); /* _Martin Ettl_, Oct 29 2012 */
%o (Magma) [1] cat [4*3^(n-1): n in [1..25]]; // _Vincenzo Librandi_, Dec 11 2012
%Y Cf. A029653, A143865, column 4 in A265583, A015448.
%K nonn,easy,nice,walk
%O 0,2
%A _N. J. A. Sloane_
%E Additional comments from _Michael Somos_, Jun 18 2002
%E Edited by _N. J. A. Sloane_, Dec 04 2009