login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Pi/4.
93

%I #207 Dec 21 2024 14:14:50

%S 7,8,5,3,9,8,1,6,3,3,9,7,4,4,8,3,0,9,6,1,5,6,6,0,8,4,5,8,1,9,8,7,5,7,

%T 2,1,0,4,9,2,9,2,3,4,9,8,4,3,7,7,6,4,5,5,2,4,3,7,3,6,1,4,8,0,7,6,9,5,

%U 4,1,0,1,5,7,1,5,5,2,2,4,9,6,5,7,0,0,8,7,0,6,3,3,5,5,2,9,2,6,6,9,9,5,5,3,7

%N Decimal expansion of Pi/4.

%C Also the ratio of the area of a circle to the circumscribed square. More generally, the ratio of the area of an ellipse to the circumscribed rectangle. Also the ratio of the volume of a cylinder to the circumscribed cube. - _Omar E. Pol_, Sep 25 2013

%C Also the surface area of a quarter-sphere of diameter 1. - _Omar E. Pol_, Oct 03 2013

%C Least positive solution to sin(x) = cos(x). - _Franklin T. Adams-Watters_, Jun 17 2014

%C Dirichlet L-series of the non-principal character modulo 4 (A101455) at 1. See e.g. Table 22 of arXiv:1008.2547. - _R. J. Mathar_, May 27 2016

%C This constant is also equal to the infinite sum of the arctangent functions with nested radicals consisting of square roots of two. Specifically, one of the Viete-like formulas for Pi is given by Pi/4 = Sum_{k = 2..oo} arctan(sqrt(2 - a_{k - 1})/a_k), where the nested radicals are defined by recurrence relations a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2) (see the article [Abrarov and Quine]). - _Sanjar Abrarov_, Jan 09 2017

%C Pi/4 is the area enclosed between circumcircle and incircle of a regular polygon of unit side. - _Mohammed Yaseen_, Nov 29 2023

%D Jörg Arndt and Christoph Haenel, Pi: Algorithmen, Computer, Arithmetik, Springer 2000, p. 150.

%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 6.3 and 8.4, pp. 429 and 492.

%D Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, p. 408.

%D J. Rivaud, Analyse, Séries, équations différentielles, Mathématiques supérieures et spéciales, Premier cycle universitaire, Vuibert, 1981, Exercice 3, p. 136.

%H Reinhard Zumkeller, <a href="/A003881/b003881.txt">Table of n, a(n) for n = 0..1000</a>

%H Sanjar M. Abrarov and Brendan M. Quine, <a href="https://dx.doi.org/10.6084/m9.figshare.4509014">A Viète-like formula for pi based on infinite sum of the arctangent functions with nested radicals</a>, figshare, 4509014, (2017).

%H Peter Bala, <a href="/A003881/a003881.pdf">Arctanh(z) and the Legendre polynomials</a>

%H Jonathan M. Borwein, Peter B. Borwein, and Karl Dilcher, <a href="http://www.jstor.org/stable/2324715">Pi, Euler numbers and asymptotic expansions</a>, Amer. Math. Monthly, 96 (1989), 681-687.

%H Ronald K. Hoeflin, <a href="https://web.archive.org/web/20140220050028/http://www.eskimo.com/~miyaguch/titan.html">Titan Test</a>.

%H Richard J. Mathar, <a href="https://arxiv.org/abs/1008.2547">Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015.

%H Literate Programs, <a href="http://en.literateprograms.org/Pi_with_Machin&#39;s_formula_(Haskell)">Pi with Machin's formula (Haskell)</a>.

%H Michael Penn, <a href="https://www.youtube.com/watch?v=FG9tglvQrGo">A surprising appearance of pie!</a>, YouTube video, 2020.

%H Michael Penn, <a href="https://www.youtube.com/watch?v=PQ9vHEcIrU0">Transforming normal identities into "crazy" ones</a>, YouTube video, 2022.

%H Srinivasa Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/question/q353.htm">Question 353</a>, J. Ind. Math. Soc.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeProducts.html">Prime Products</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Leibniz_formula_for_π">Leibniz formula for Pi</a>.

%H <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%F Equals Integral_{x=0..oo} sin(2x)/(2x) dx.

%F Equals lim_{n->oo} n*A001586(n-1)/A001586(n) (conjecture). - _Mats Granvik_, Feb 23 2011

%F Equals Integral_{x=0..1} 1/(1+x^2) dx. - _Gary W. Adamson_, Jun 22 2003

%F Equals Integral_{x=0..Pi/2} sin(x)^2 dx, or Integral_{x=0..Pi/2} cos(x)^2 dx. - _Jean-François Alcover_, Mar 26 2013

%F Equals (Sum_{x=0..oo} sin(x)*cos(x)/x) - 1/2. - _Bruno Berselli_, May 13 2013

%F Equals (-digamma(1/4) + digamma(3/4))/4. - _Jean-François Alcover_, May 31 2013

%F Equals Sum_{n>=0} (-1)^n/(2*n+1). - _Geoffrey Critzer_, Nov 03 2013

%F Equals Integral_{x=0..1} Product_{k>=1} (1-x^(8*k))^3 dx [cf. A258414]. - _Vaclav Kotesovec_, May 30 2015

%F Equals Product_{k in A071904} (if k mod 4 = 1 then (k-1)/(k+1)) else (if k mod 4 = 3 then (k+1)/(k-1)). - _Dimitris Valianatos_, Oct 05 2016

%F From _Peter Bala_, Nov 15 2016: (Start)

%F For N even: 2*(Pi/4 - Sum_{k = 1..N/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^(N/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. See Borwein et al., Theorem 1 (a).

%F For N odd: 2*(Pi/4 - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^((N-1)/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1.

%F For N = 0,1,2,... and m = 1,3,5,... there holds Pi/4 = (2*N)! * m^(2*N) * Sum_{k >= 0} ( (-1)^(N+k) * 1/Product_{j = -N..N} (2*k + 1 + 2*m*j) ); when N = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.

%F For examples of asymptotic expansions for the tails of these series representations for Pi/4 see A024235 (case N = 1, m = 1), A278080 (case N = 2, m = 1) and A278195 (case N = 3, m = 1).

%F For N = 0,1,2,..., Pi/4 = 4^(N-1)*N!/(2*N)! * Sum_{k >= 0} 2^(k+1)*(k + N)!* (k + 2*N)!/(2*k + 2*N + 1)!, follows by applying Euler's series transformation to the above series representation for Pi/4 in the case m = 1. (End)

%F From _Peter Bala_, Nov 05 2019: (Start)

%F For k = 0,1,2,..., Pi/4 = k!*Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+3)* ...*(4*n+2*k+1)), where Sum_{n = -oo..oo} f(n) is understood as lim_{j -> oo} Sum_{n = -j..j} f(n).

%F Equals Integral_{x = 0..oo} sin(x)^4/x^2 dx = Sum_{n >= 1} sin(n)^4/n^2, by the Abel-Plana formula.

%F Equals Integral_{x = 0..oo} sin(x)^3/x dx = Sum_{n >= 1} sin(n)^3/n, by the Abel-Plana formula. (End)

%F From _Amiram Eldar_, Aug 19 2020: (Start)

%F Equals arcsin(1/sqrt(2)).

%F Equals Product_{k>=1} (1 - 1/(2*k+1)^2).

%F Equals Integral_{x=0..oo} x/(x^4 + 1) dx.

%F Equals Integral_{x=0..oo} 1/(x^2 + 4) dx. (End)

%F With offset 1, equals 5 * Pi / 2. - _Sean A. Irvine_, Aug 19 2021

%F Equals (1/2)!^2 = Gamma(3/2)^2. - _Gary W. Adamson_, Aug 23 2021

%F Equals Integral_{x = 0..oo} exp(-x)*sin(x)/x dx (see Rivaud reference). - _Bernard Schott_, Jan 28 2022

%F From _Amiram Eldar_, Nov 06 2023: (Start)

%F Equals beta(1), where beta is the Dirichlet beta function.

%F Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p)^(-1). (End)

%F Equals arctan( F(1)/F(4) ) + arctan( F(2)/F(3) ), where F(1), F(2), F(3), and F(4) are any four consecutive Fibonacci numbers. - _Gary W. Adamson_, Mar 03 2024

%F Pi/4 = Sum_{n >= 1} i/(n*P(n, i)*P(n-1, i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A006139(n)*A006139(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(3))^n ). - _Peter Bala_, Mar 16 2024

%F Equals arctan( phi^(-3) ) + arctan(phi^(-1) ). - _Gary W. Adamson_, Mar 27 2024

%F Equals Sum_{n>=1} eta(n)/2^n, where eta(n) is the Dirichlet eta function. - _Antonio Graciá Llorente_, Oct 04 2024

%e 0.785398163397448309615660845819875721049292349843776455243736148...

%e N = 2, m = 6: Pi/4 = 4!*3^4 Sum_{k >= 0} (-1)^k/((2*k - 11)*(2*k - 5)*(2*k + 1)*(2*k + 7)*(2*k + 13)). - _Peter Bala_, Nov 15 2016

%p evalf(Pi/4) ;

%t RealDigits[N[Pi/4,6! ]] (* _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009 *)

%t (* PROGRAM STARTS *)

%t (* Define the nested radicals a_k by recurrence *)

%t a[k_] := Nest[Sqrt[2 + #1] & , 0, k]

%t (* Example of Pi/4 approximation at K = 100 *)

%t Print["The actual value of Pi/4 is"]

%t N[Pi/4, 40]

%t Print["At K = 100 the approximated value of Pi/4 is"]

%t K := 100; (* the truncating integer *)

%t N[Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 40] (* equation (8) *)

%t (* Error terms for Pi/4 approximations *)

%t Print["Error terms for Pi/4"]

%t k := 1; (* initial value of the index k *)

%t K := 10; (* initial value of the truncating integer K *)

%t sqn := {}; (* initiate the sequence *)

%t AppendTo[sqn, {"Truncating integer K ", " Error term in Pi/4"}];

%t While[K <= 30,

%t AppendTo[sqn, {K,

%t N[Pi/4 - Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 1000] //

%t N}]; K++]

%t Print[MatrixForm[sqn]]

%t (* _Sanjar Abrarov_, Jan 09 2017 *)

%o (Haskell) -- see link: Literate Programs

%o import Data.Char (digitToInt)

%o a003881_list len = map digitToInt $ show $ machin `div` (10 ^ 10) where

%o machin = 4 * arccot 5 unity - arccot 239 unity

%o unity = 10 ^ (len + 10)

%o arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where

%o arccot' x unity summa xpow n sign

%o | term == 0 = summa

%o | otherwise = arccot'

%o x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)

%o where term = xpow `div` n

%o -- _Reinhard Zumkeller_, Nov 20 2012

%o (SageMath) # Leibniz/Cohen/Villegas/Zagier/Arndt/Haenel

%o def FastLeibniz(n):

%o b = 2^(2*n-1); c = b; s = 0

%o for k in range(n-1,-1,-1):

%o t = 2*k+1

%o s = s + c/t if is_even(k) else s - c/t

%o b *= (t*(k+1))/(2*(n-k)*(n+k))

%o c += b

%o return s/c

%o A003881 = RealField(3333)(FastLeibniz(1330))

%o print(A003881) # _Peter Luschny_, Nov 20 2012

%o (PARI) Pi/4 \\ _Charles R Greathouse IV_, Jul 07 2014

%o (Magma) R:= RealField(100); Pi(R)/4; // _G. C. Greubel_, Mar 08 2018

%Y Cf. A000796, A001586, A071904, A019669, A197723, A347152.

%Y Cf. A000182, A000364, A024235, A278080, A278195.

%Y Cf. A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).

%Y Cf. A001622.

%K nonn,cons,easy,changed

%O 0,1

%A _N. J. A. Sloane_, _Simon Plouffe_

%E a(98) and a(99) corrected by _Reinhard Zumkeller_, Nov 20 2012