login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0, a(n) = a(n-1) XOR -n.
6

%I #21 Sep 08 2022 08:44:32

%S 0,1,-1,4,0,5,-1,8,0,9,-1,12,0,13,-1,16,0,17,-1,20,0,21,-1,24,0,25,-1,

%T 28,0,29,-1,32,0,33,-1,36,0,37,-1,40,0,41,-1,44,0,45,-1,48,0,49,-1,52,

%U 0,53,-1,56,0,57,-1,60,0,61,-1,64,0,65,-1,68

%N a(0) = 0, a(n) = a(n-1) XOR -n.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,0,-1).

%F G.f.: x*(1-x+3x^2+x^3)/((x^2-1)^2*(x^2+1)).

%F |a(n)| = n-(-1)^n*|a(n-1)|. - _Vladeta Jovovic_, Mar 13 2003

%F a(4n)=0, a(4n+1)=4n+1, a(4n+2)=-1, a(4n+3)=4n+4, n>=0.

%F From _Wesley Ivan Hurt_, May 01 2016, May 03 2016: (Start)

%F a(n) = a(n-2)+a(n-4)-a(n-6) for n>5.

%F a(n) = (-1)^floor((n-1)/2) * Sum_{i=0..n} i*(-1)^floor(i/2).

%F a(n) = (n-(n+1)*(-1)^n+(-1)^((2*n+1-(-1)^n)/4))/2. (End)

%F E.g.f.: (cos(x) + (-1 + 2*x)*cosh(x) - sin(x) + sinh(x))/2. - _Ilya Gutkovskiy_, May 03 2016

%p A003816:=n->(n-(n+1)*(-1)^n+(-1)^((2*n+1-(-1)^n)/4))/2: seq(A003816(n), n=0..150); # _Wesley Ivan Hurt_, May 03 2016

%t CoefficientList[Series[x*(1 - x + 3 x^2 + x^3)/((x^2 - 1)^2*(x^2 + 1)), {x, 0, 100}], x] (* _Wesley Ivan Hurt_, May 01 2016 *)

%t nxt[{n_,a_}]:={n+1,BitXor[a,-n-1]}; -#&/@(NestList[nxt,{0,0},70][[All,2]]) (* or *) LinearRecurrence[{0,1,0,1,0,-1},{0,1,-1,4,0,5},70] (* _Harvey P. Dale_, Oct 16 2019 *)

%o (PARI) a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,0,1,0,1,0]^n*[0;1;-1;4;0;5])[1,1] \\ _Charles R Greathouse IV_, May 02 2016

%o (Magma) [(n-(n+1)*(-1)^n+(-1)^((2*n+1-(-1)^n) div 4))/2 : n in [0..100]]; // _Wesley Ivan Hurt_, May 03 2016

%Y Cf. A003815.

%K sign,easy

%O 0,4

%A _Marc LeBrun_