login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Order of simple Chevalley group A_3(q) (or D_3(q)), q = prime power.
1

%I #18 Jun 14 2024 22:31:08

%S 20160,6065280,987033600,7254000000,2317591180800,34558531338240,

%T 50759843097600,2069665112592000,12714519233969280,

%U 1148120010326016000,712975930219192320,7568375355962524800

%N Order of simple Chevalley group A_3(q) (or D_3(q)), q = prime power.

%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.

%D H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

%F a(n) = a(A000961(n+1),3) where a(q,n) is defined in A003793. - _Sean A. Irvine_, Sep 18 2015

%t f[m_, n_] := Block[{g, x, y}, g[x_, y_] := x^(y (y + 1)/2) Product[x^k - 1, {k, 2, y + 1}]; g[m, n]/GCD[n + 1, m - 1]]; f[#, 3] & /@ Select[Range[2, 20], PrimePowerQ] (* _Michael De Vlieger_, Sep 18 2015 *)

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_