OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
F. Faase, Results from the counting program
P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008.
P. Raff, Analysis of the Number of Spanning Trees of (K_4 - e) x P_n. Contains sequence, recurrence, generating function, and more.
Index entries for linear recurrences with constant coefficients, signature (140,-1715,4952,-1715,140,-1).
FORMULA
Faase gives a 6-term linear recurrence on his web page:
a(1) = 8,
a(2) = 1152,
a(3) = 147000,
a(4) = 18643968,
a(5) = 2363741512,
a(6) = 299675376000 and
a(n) = 140a(n-1) - 1715a(n-2) + 4952a(n-3) - 1715a(n-4) + 140a(n-5) - a(n-6).
G.f.: 8x(1+4x-70x^2+4x^3+x^4)/((x^2-4x+1)(x^4-136x^3+1170x^2-136x+1)). [R. J. Mathar, Dec 16 2008]
MATHEMATICA
LinearRecurrence[{140, -1715, 4952, -1715, 140, -1}, {8, 1152, 147000, 18643968, 2363741512, 299675376000}, 40] (* Harvey P. Dale, Mar 05 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
Title corrected by Paul Raff, Mar 06 2009
STATUS
approved