Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4665 #31 Oct 02 2021 07:56:44
%S 1,-1,9,-177,6097,-325249,24807321,-2558036145,342232522657,
%T -57569080467073,11879658510739497,-2948163649552594737,
%U 865683568087537789297,-296699416391356495667713,117330699580950022391960505
%N Expansion of e.g.f. cos(tanh(x)) (even powers only).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A003711/b003711.txt">Table of n, a(n) for n = 0..100</a>
%F a(n) = Sum_{m=1..n} ( Sum_{k=0..2*n-2*m} binomial(2*m+k-1,2*m-1) * (2*m+k)! * (-1)^k * 2^(2*n-2*m-k) * Stirling2(2*n,2*m+k) )/(2*m)!, n>0, a(0)=1. - _Vladimir Kruchinin_, Jun 10 2011
%t nn = 20; Table[(CoefficientList[Series[Cos[Tanh[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* _Vaclav Kotesovec_, Feb 16 2015 *)
%o (Maxima)
%o a(n):=sum((sum(binomial(2*m+k-1,2*m-1)*(2*m+k)!*(-1)^(k)*2^(2*n-2*m-k)*stirling2(2*n,2*m+k),k,0,2*n-2*m))/(2*m)!,m,1,n); /* _Vladimir Kruchinin_, Jun 10 2011 */
%Y Cf. A003710.
%K sign
%O 0,3
%A _R. H. Hardin_, _Simon Plouffe_