login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is smallest number which is uniquely of the form a(j) + a(k) with 1 <= j < k < n and a(1) = 1, a(2) = 4.
(Formerly M3237)
7

%I M3237 #32 Mar 13 2023 08:41:10

%S 1,4,5,6,7,8,10,16,18,19,21,31,32,33,42,46,56,57,66,70,79,82,91,96,

%T 104,105,107,116,129,130,131,141,158,165,168,179,180,182,191,204,205,

%U 206,216,217,218,219,229,230,244,256,266,267,268,281,290,315,316,317,318,328

%N a(n) is smallest number which is uniquely of the form a(j) + a(k) with 1 <= j < k < n and a(1) = 1, a(2) = 4.

%C An Ulam-type sequence - see A002858 for many further references, comments, etc. - _T. D. Noe_, Jan 21 2008

%D R. K. Guy, "s-Additive sequences", preprint, 1994.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A003666/b003666.txt">Table of n, a(n) for n = 1..10000</a>

%H S. R. Finch, <a href="http://www.emis.de/journals/EM/">Patterns in 1-additive sequences</a>, Experimental Mathematics 1 (1992), 57-63.

%H R. K. Guy, <a href="/A007300/a007300.pdf">s-Additive sequences</a>, Preprint, 1994. (Annotated scanned copy)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/UlamSequence.html">Ulam Sequence</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Ulam_number">Ulam number</a>

%H <a href="/index/U#Ulam_num">Index entries for Ulam numbers</a>

%t Nest[Append[#, SelectFirst[Union@ Select[Tally@ Map[Total, Select[Permutations[#, {2}], #1 < #2 & @@ # &]], Last@ # == 1 &][[All, 1]], Function[k, FreeQ[#, k]]]] &, {1, 4}, 58] (* _Michael De Vlieger_, Nov 16 2017 *)

%o (Haskell)

%o a003666 n = a003666_list !! (n-1)

%o a003666_list = 1 : 4 : ulam 2 4 a003666_list

%o -- Function ulam as defined in A002858.

%o -- _Reinhard Zumkeller_, Nov 03 2011

%Y Cf. A003662, A199120, A199121.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, _Mira Bernstein_