OFFSET
1,6
COMMENTS
The number of genera of a quadratic field is equal to the number of elements x in the class group such that x^2 = e where e is the identity. - Jianing Song, Jul 24 2018
REFERENCES
D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
FORMULA
MATHEMATICA
okQ[n_] := n != 1 && SquareFreeQ[n/2^IntegerExponent[n, 2]] && (Mod[n, 4] == 3 || Mod[n, 16] == 8 || Mod[n, 16] == 4);
Reap[For[n = 1, n <= 1000, n++, If[okQ[n], Sow[2^(PrimeNu[n]-1)]]]][[2, 1]] (* Jean-François Alcover, Aug 16 2019, after Andrew Howroyd *)
PROG
(PARI) for(n=1, 1000, if(isfundamental(-n), print1(2^(omega(n) - 1), ", "))) \\ Andrew Howroyd, Jul 24 2018
(PARI) for(n=1, 1000, if(isfundamental(-n), print1(2^#select(t->t%2==0, quadclassunit(-n).cyc), ", "))) \\ Andrew Howroyd, Jul 24 2018
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Name clarified and offset corrected by Jianing Song, Jul 24 2018
STATUS
approved