login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003640
Number of genera of imaginary quadratic field with discriminant -k, k = A003657(n).
(Formerly M0090)
6
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 4, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 2, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 1, 4, 4, 2, 2, 1, 2, 2, 2, 1, 4, 2, 4, 1, 4, 2, 1, 4, 4, 1, 2, 2, 2, 2, 2, 2, 2, 1, 4, 1, 4, 2, 2, 2, 2, 1, 2
OFFSET
1,6
COMMENTS
The number of genera of a quadratic field is equal to the number of elements x in the class group such that x^2 = e where e is the identity. - Jianing Song, Jul 24 2018
REFERENCES
D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
FORMULA
a(n) = 2^(t-1) where t = number of distinct prime divisors of A003657(n).
a(n) = 2^(omega(A003657(n)) - 1).
MATHEMATICA
okQ[n_] := n != 1 && SquareFreeQ[n/2^IntegerExponent[n, 2]] && (Mod[n, 4] == 3 || Mod[n, 16] == 8 || Mod[n, 16] == 4);
Reap[For[n = 1, n <= 1000, n++, If[okQ[n], Sow[2^(PrimeNu[n]-1)]]]][[2, 1]] (* Jean-François Alcover, Aug 16 2019, after Andrew Howroyd *)
PROG
(PARI) for(n=1, 1000, if(isfundamental(-n), print1(2^(omega(n) - 1), ", "))) \\ Andrew Howroyd, Jul 24 2018
(PARI) for(n=1, 1000, if(isfundamental(-n), print1(2^#select(t->t%2==0, quadclassunit(-n).cyc), ", "))) \\ Andrew Howroyd, Jul 24 2018
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
Name clarified and offset corrected by Jianing Song, Jul 24 2018
STATUS
approved