login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003624 Duffinian numbers: composite numbers k relatively prime to sigma(k).
(Formerly M3324)
9

%I M3324

%S 4,8,9,16,21,25,27,32,35,36,39,49,50,55,57,63,64,65,75,77,81,85,93,98,

%T 100,111,115,119,121,125,128,129,133,143,144,155,161,169,171,175,183,

%U 185,187,189,201,203,205,209,215,217,219,221,225,235,237,242,243,245,247

%N Duffinian numbers: composite numbers k relatively prime to sigma(k).

%C All prime powers greater than 1 are in the sequence. No factorial number can be a term. - _Arkadiusz Wesolowski_, Feb 16 2014

%C Even terms are in A088827. Any term also in A005153 is either an even square or twice an even square not divisible by 3. - _Jaycob Coleman_, Jun 08 2014

%C All primes satisfy the second condition since gcd(p, p+1) = 1, thus making this sequence a proper subset of A014567. - _Robert G. Wilson v_, Oct 02 2014

%D T. Koshy, Elementary number theory with applications, Academic Press, 2002, p. 141, exerc. 6,7,8 and 9.

%D L. Richard Duffy, The Duffinian numbers, Journal of Recreational Mathematics 12 (1979), pp. 112-115.

%D Peter Heichelheim, There exist five Duffinian consecutive integers but not six, Journal of Recreational Mathematics 14 (1981-1982), pp. 25-28.

%D J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 64.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Amiram Eldar, <a href="/A003624/b003624.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)

%H Florian Luca, <a href="http://projecteuclid.org/euclid.mjms/1316032973">On the densities of some subsets of integers</a>, Missouri Journal of Mathematical Sciences 19:3 (2007), pp. 167-170.

%H Rose Mary Zbiek, <a href="http://www.kappamuepsilon.org/pages/a/Pentagon/Vol_42_Num_2_Spring_1983.pdf">What can we say about the Duffinian numbers?</a>, The Pentagon 42:2 (1983), pp. 99-109.

%F A009194(a(n)) * (1 - A010051(a(n))) = 1. - _Reinhard Zumkeller_, Mar 23 2013

%F a(n) >> n log log log n, see Luca. (Clearly excluding the primes only makes the n-th term larger.) - _Charles R Greathouse IV_, Feb 17 2014

%e 4 is in the sequence since it is not a prime, its divisors 1, 2, and 4 sum to 7, and gcd(7, 4) = 1.

%e 21 is in the sequences since it is not a prime, and its divisors 1, 3, 7, and 21 sum to 32, which is coprime to 21.

%t fQ[n_] := n != 1 && !PrimeQ[n] && GCD[n, DivisorSigma[1, n]] == 1; Select[ Range@ 280, fQ]

%o (PARI) is(n)=gcd(n,sigma(n))==1&&!isprime(n) \\ _Charles R Greathouse IV_, Feb 13 2013

%o (Haskell)

%o a003624 n = a003624_list !! (n-1)

%o a003624_list = filter ((== 1) . a009194) a002808_list

%o -- _Reinhard Zumkeller_, Mar 23 2013

%Y Cf. A000203, A002808, A014567, A025475.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, _Mira Bernstein_, Sep 19 1994

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 05:06 EST 2021. Contains 341741 sequences. (Running on oeis4.)