login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form 3^i*5^j with i, j >= 0.
45

%I #60 Oct 23 2024 00:41:50

%S 1,3,5,9,15,25,27,45,75,81,125,135,225,243,375,405,625,675,729,1125,

%T 1215,1875,2025,2187,3125,3375,3645,5625,6075,6561,9375,10125,10935,

%U 15625,16875,18225,19683,28125,30375,32805,46875,50625,54675,59049

%N Numbers of the form 3^i*5^j with i, j >= 0.

%C Odd 5-smooth numbers (A051037). - _Reinhard Zumkeller_, Sep 18 2005

%H Reinhard Zumkeller, <a href="/A003593/b003593.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ~ 1/sqrt(15)*exp(sqrt(2*log(3)*log(5)*n)) asymptotically. - _Benoit Cloitre_, Jan 22 2002

%F The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(15*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - _Peter Bala_, Mar 18 2019

%F Sum_{n>=1} 1/a(n) = (3*5)/((3-1)*(5-1)) = 15/8. - _Amiram Eldar_, Sep 22 2020

%p isA003593 := proc(n)

%p if n = 1 then

%p true;

%p else

%p return (numtheory[factorset](n) minus {3, 5} = {} );

%p end if;

%p end proc:

%p A003593 := proc(n)

%p option remember;

%p if n = 1 then

%p 1;

%p else

%p for a from procname(n-1)+1 do

%p if isA003593(a) then

%p return a;

%p end if;

%p end do:

%p end if;

%p end proc:

%p seq(A003593(n),n=1..30) ; # _R. J. Mathar_, Aug 04 2016

%t fQ[n_] := PowerMod[15, n, n] == 0; Select[Range[60000], fQ] (* _Bruno Berselli_, Sep 24 2012 *)

%o (PARI) list(lim)=my(v=List(),N);for(n=0,log(lim)\log(5),N=5^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jun 28 2011

%o (PARI) is(n)=n==3^valuation(n,3)*5^valuation(n,5) \\ _Charles R Greathouse IV_, Apr 23 2013

%o (Haskell)

%o import Data.Set (singleton, deleteFindMin, insert)

%o a003593 n = a003593_list !! (n-1)

%o a003593_list = f (singleton 1) where

%o f s = m : f (insert (3*m) $ insert (5*m) s') where

%o (m,s') = deleteFindMin s

%o -- _Reinhard Zumkeller_, Sep 13 2011

%o (Magma) [n: n in [1..60000] | PrimeDivisors(n) subset [3,5]]; // _Bruno Berselli_, Sep 24 2012

%o (GAP) Filtered([1..60000],n->PowerMod(15,n,n)=0); # _Muniru A Asiru_, Mar 19 2019

%o (Python)

%o from sympy import integer_log

%o def A003593(n):

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def f(x): return n+x-sum(integer_log(x//5**i,3)[0]+1 for i in range(integer_log(x,5)[0]+1))

%o return bisection(f,n,n) # _Chai Wah Wu_, Oct 22 2024

%Y Cf. A033849, A112751-A112756, A143202, A022337 (list of j), A022336(list of i).

%Y Cf. A264997 (partitions into), see also A264998. Cf. A108347 (odd 7-smooth).

%K nonn

%O 1,2

%A _N. J. A. Sloane_