login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least number m such that 8^m == +- 1 (mod 8n + 1).
0

%I #12 Oct 22 2023 16:45:45

%S 1,4,10,5,10,7,3,2,3,9,11,8,4,14,55,7,34,14,8,11,26,29,6,16,11,15,5,

%T 20,29,4,41,8,26,4,35,68,15,10,26,53,23,7,44,44,57,20,14,20,65,100,34,

%U 23,40,12,14,112,38,20,35,6,27,35,50,3,130,253,89,6,13,40

%N Least number m such that 8^m == +- 1 (mod 8n + 1).

%t lnm[n_]:=Module[{m=1},While[PowerMod[8,m,8n+1]!=1&&PowerMod[ 8,m,8n+1] !=8n,m++];m]; Array[lnm,60] (* _Harvey P. Dale_, Jul 17 2016 *)

%K nonn

%O 1,2

%A _N. J. A. Sloane_