Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jul 24 2019 12:03:40
%S 48,140,1050,1575,2024,5775,8892,9504,62744,186615,196664,199760,
%T 266000,312620,526575,573560,587460,1000824,1081184,1139144,1140020,
%U 1173704,1208504,1233056,1236536,1279950,1921185,2036420,2102750,2140215,2171240,2198504,2312024
%N The smaller of a betrothed pair.
%D R. K. Guy, Unsolved Problems in Number Theory, B5.
%H Giovanni Resta, <a href="/A003502/b003502.txt">Table of n, a(n) for n = 1..4122</a> (terms < 10^13, terms 1..1000 from Donovan Johnson, 1001..1126 from Amiram Eldar)
%H P. Hagis and G. Lord, <a href="https://doi.org/10.1090/S0025-5718-1977-0434939-3">Quasi-amicable numbers</a>, Math. Comp. 31 (1977), 608-611.
%H D. Moews, <a href="http://djm.cc/augmented.fmtlist">Augmented amicable pairs</a>
%H Jan Munch Pedersen, <a href="http://62.198.248.44/aliquot/tables.htm">Tables of Aliquot Cycles</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Betrothed_numbers">Betrothed numbers</a>
%e 48 is a term because sigma(48) - 48 - 1 = 124 - 48 - 1 = 75 and 48 < 75 and sigma(75) - 75 - 1 = 124 - 75 - 1 = 48. - _David A. Corneth_, Jan 24 2019
%t aapQ[n_] := Module[{c=DivisorSigma[1, n]-1-n}, c!=n&&DivisorSigma[ 1, c]-1-c == n]; Transpose[Union[Sort[{#, DivisorSigma[1, #]-1-#}]&/@Select[Range[2, 10000], aapQ]]] [[1]] (* _Amiram Eldar_, Jan 24 2019 after Harvey P. Dale at A007992 *)
%o (PARI) is(n) = m = sigma(n) - n - 1; if(m == 0 || n >= m, return(0)); n == sigma(m) - m - 1 \\ _David A. Corneth_, Jan 24 2019
%Y Cf. A000203, A003503, A005276.
%K nonn,nice
%O 1,1
%A _Robert G. Wilson v_
%E Computed by Fred W. Helenius (fredh(AT)ix.netcom.com)
%E Extended by _T. D. Noe_, Dec 29 2011