Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4425 #105 Oct 04 2024 11:23:54
%S 0,1,7,43,259,1555,9331,55987,335923,2015539,12093235,72559411,
%T 435356467,2612138803,15672832819,94036996915,564221981491,
%U 3385331888947,20311991333683,121871948002099,731231688012595,4387390128075571
%N a(n) = (6^n - 1)/5.
%C a(n) = A125118(n, 5) for n>4. - _Reinhard Zumkeller_, Nov 21 2006
%C Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - _Milan Janjic_, Feb 21 2010
%C Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>1, a(n-1)=(-1)^n*charpoly(A,1). - _Milan Janjic_, Feb 21 2010
%C Repunits to base 6. A repunit consisting of zero 1's (empty string) gives the empty sum, i.e., 0 (only case where leading zero is shown, for convenience). - _Daniel Forgues_, Jul 08 2011
%C 3*a(n) is the total number of holes in a certain triangle fractal (start with 6 triangles, 3 holes) after n iterations. See illustration in links. - _Kival Ngaokrajang_, Feb 21 2015
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A003464/b003464.txt">Table of n, a(n) for n = 0..1000</a>
%H C. Banderier and D. Merlini, <a href="http://algo.inria.fr/banderier/Papers/infjumps.ps">Lattice paths with an infinite set of jumps</a>, FPSAC02, Melbourne, 2002.
%H Carlos M. da Fonseca and Anthony G. Shannon, <a href="https://doi.org/10.7546/nntdm.2024.30.3.491-498">A formal operator involving Fermatian numbers</a>, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=375">Encyclopedia of Combinatorial Structures 375</a>
%H Kival Ngaokrajang, <a href="/A003464/a003464.pdf">Illustration of initial terms</a>
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-6).
%F Binomial transform of A003948. If preceded by 0, then binomial transform of powers of 5, A000351 (preceded by 0). - _Paul Barry_, Mar 28 2003
%F a(n) = Sum_{k=1..n} C(n, k)*5^(k-1).
%F E.g.f.: (exp(6*x) - exp(x))/5. - _Paul Barry_, Mar 28 2003
%F G.f.: x/((1-x)*(1-6*x)). - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 06 2005
%F a(n) = 6*a(n-1) + 1 with a(1)=1. - _Vincenzo Librandi_, Nov 17 2010
%F a(n) = 7*a(n-1) - 6*a(n-2). - _Vincenzo Librandi_, Nov 08 2012
%e a(n) in base 6.................... a(n) in base 10:
%e 0..................................0
%e 1..................................1
%e 11.................................7
%e 111................................43
%e 1111...............................259
%e 11111..............................1555
%e 111111.............................9331
%e 1111111............................55987, etc. - _Philippe Deléham_, Mar 12 2014
%p a:=n->sum(6^(n-j),j=1..n): seq(a(n), n=1..21); # _Zerinvary Lajos_, Jan 04 2007
%p A003464:=1/(6*z-1)/(z-1); # conjectured by _Simon Plouffe_ in his 1992 dissertation
%p a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+6*a[n-2]+2 od: seq(a[n], n=1..33); # _Zerinvary Lajos_, Dec 14 2008
%t (6^Range[20]-1)/5 (* _Harvey P. Dale_, Dec. 14, 2010 *)
%t LinearRecurrence[{7, -6}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 08 2012 *)
%o (PARI) for(n=1,10,print1((6^n-1)/5,","));
%o (Sage) [lucas_number1(n,7,6) for n in range(1, 22)] # _Zerinvary Lajos_, Apr 23 2009
%o (Sage) [gaussian_binomial(n,1,6) for n in range(1,22)] # _Zerinvary Lajos_, May 28 2009
%o (Maxima) A003464(n):=floor((6^n-1)/5)$ makelist(A003464(n),n,0,30); /* _Martin Ettl_, Nov 05 2012 */
%o (Magma) [n le 2 select n-1 else 7*Self(n-1) - 6*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 08 2012
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Reinhard Zumkeller_, Nov 21 2006
%E G.f. corrected by _Philippe Deléham_, Mar 11 2014