Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1291 #74 Sep 05 2024 11:55:04
%S 1,2,4,16,48,160,576,4096,14336,73728,327680,2985984,14929920,
%T 77635584,418037760,4294967296,21474836480,146028888064,894426939392,
%U 10240000000000,59392000000000,409600000000000
%N Hadamard maximal determinant problem: largest determinant of (+1,-1)-matrix of order n.
%C I added the entry for n=22 since this has been proved optimal by Chasiotis et al (reference in A003432). [_Richard P. Brent_, Aug 17 2021]
%D Ed Hughes and Rob Pratt, New Features in SAS/OR 13.1, SAS Paper SAS256-2014.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D See A003432 for further references, links and formulas.
%H Richard P. Brent and Judy-anne H. Osborn, <a href="http://arxiv.org/abs/1208.3819">On minors of maximal determinant matrices</a>, arXiv preprint arXiv:1208.3819 [math.CO], 2012.
%H Thomas Decru, Tako Boris Fouotsa, Paul Frixons, Valerie Gilchrist, and Christophe Petit, <a href="https://ia.cr/2024/1332">Attacking trapdoors from matrix products</a>, Cryptology ePrint Archive (2024) Paper 2024/1332.
%H Massimiliano Fasi and Gian Maria Negri Porzio, <a href="http://eprints.maths.manchester.ac.uk/2709/">Determinants of Normalized Bohemian Upper Hessemberg Matrices</a>, University of Manchester (England, 2019).
%H John Holbrook, Nathaniel Johnston, and Jean-Pierre Schoch, <a href="https://arxiv.org/abs/2206.02863">Real Schur norms and Hadamard matrices</a>, arXiv:2206.02863 [math.CO], 2022.
%H Ion Nechita, <a href="http://ion.nechita.net/wp-content/uploads/2016/09/had.pdf">Some analytical aspects of Hadamard matrices</a>.
%H William P. Orrick and B. Solomon, <a href="http://dx.doi.org/10.1016/j.disc.2006.04.041">Large-determinant sign matrices of order 4k+1</a>, Discr. Math. 307 (2007), 226-236.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/-11-Matrix.html">-11-Matrix</a>
%H <a href="/index/Mat#binmat">Index entries for sequences related to binary matrices</a>
%H <a href="/index/Ha#Hadamard">Index entries for sequences related to Hadamard matrices</a>
%H <a href="/index/De#determinants">Index entries for sequences related to maximal determinants</a>
%F a(n) = 2^(n-1)*A003432(n-1). E.g., a(6) = 32*A003432(5) = 32*5 = 160.
%F a(n) <= n^(n/2).
%t A003432 = Cases[Import["https://oeis.org/A003432/b003432.txt", "Table"], {_, _}][[All, 2]];
%t a[n_] := 2^(n-1) A003432[[n]];
%t a /@ Range[21] (* _Jean-François Alcover_, Jan 17 2020 *)
%Y A003432 is the main entry for this sequence.
%Y Cf. A051753.
%Y Cf. A188895 (number of distinct matrices having this maximal determinant).
%K nonn,hard,nice
%O 1,2
%A _N. J. A. Sloane_
%E a(19)-a(21) added by _William P. Orrick_, Dec 20 2011
%E a(22) added by _Richard P. Brent_, Aug 16 2021