login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of 7 positive 4th powers.
40

%I #30 Jul 31 2021 17:57:41

%S 7,22,37,52,67,82,87,97,102,112,117,132,147,162,167,177,182,197,212,

%T 227,242,247,262,277,292,307,322,327,337,342,352,357,372,387,402,407,

%U 417,422,437,452,467,482,487,502,517,532,547,562,567,577,582,592,597,612,627

%N Numbers that are the sum of 7 positive 4th powers.

%H Robert Israel, <a href="/A003341/b003341.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number</a>.

%e From _David A. Corneth_, Aug 04 2020: (Start)

%e 5971 is in the sequence as 5971 = 3^4 + 3^4 + 5^4 + 6^4 + 6^4 + 6^4 + 6^4.

%e 12022 is in the sequence as 12022 = 1^4 + 2^4 + 7^4 + 7^4 + 7^4 + 7^4 + 7^4.

%e 16902 is in the sequence as 16902 = 1^4 + 1^4 + 3^4 + 6^4 + 7^4 + 9^4 + 9^4. (End)

%p N:= 1000:

%p S1:= {seq(i^4,i=1..floor(N^(1/4)))}:

%p S2:= select(`<=`,{seq(seq(i+j,i=S1),j=S1)},N):

%p S4:= select(`<=`,{seq(seq(i+j,i=S2),j=S2)},N):

%p S6:= select(`<=`,{seq(seq(i+j,i=S2),j=S4)},N):

%p sort(convert(select(`<=`,{seq(seq(i+j,i=S1),j=S6)},N),list)); # _Robert Israel_, Jul 21 2019

%o (Python)

%o from itertools import combinations_with_replacement as mc

%o def aupto(limit):

%o qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 6 <= limit]

%o ss = set(sum(c) for c in mc(qd, 7))

%o return sorted(s for s in ss if s <= limit)

%o print(aupto(630)) # _Michael S. Branicky_, Jul 22 2021

%Y Cf. A000583, A003330, A003340, A003342, A003352, A047718, A345568, A345823.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_